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Abstracts

Convergence of Discrete Elastica
HENRIK SCHUMACHER
(joint work with Sebastian Scholtes and Max Wardetzky)

The bending energy of a thin, naturally straight, homogeneous and isotropic elastic

rod of length L is given by

L
F(y) = / ()2 ds.

where 7: [0, L] — R™ is the arclength parametrisation and x = v”(s) the curvature
vector. Consider the following boundary value problem: Given points P, @) € R™
and unit vectors v, w € S™~! find the shapes of static elastic curves with clamped

ends and fixed length. Defining the space

v e L*([0,L};S™7 1), 4(0) = P, (L) = Q,
v" € L*([0,L;R™), ~'(0) =wv, ¥ (L) =w

this can be reformulated to find the minimizers of F': C — R.
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A widely used discrete bending energy for a polygonal line p = (po, p1,--* ,Pn)
with p; € R™ is given by
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where ¢; is the turning angle and ¢; is given by ¢; = $(|pi+1 — pi| + |pi — pi—1])-
We restrict ourselves to evenly segmented polygons, i.e. |p; — pi—1| = % for all
i=1,...,n. It is straightforward to formulate a discrete analogon of the boundary
value problem above: Find the minimizers of F,,: C,, — R with the discrete ansatz
space

L
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C, e c (R™)" ‘pl Di 1| n,p() . Dn ’}.
n {(po pn) ( ) P1—Po = %’U, Prn — Pn_1 = %w

There has been an attempt by Bruckstein et al. [1] to relate argmin(F),)
and argmin(F') via techniques from the theory of epi-convergence. However, epi-
convergence of F, to F' only guarantees that some minimizers of F' can be approx-
imated by those of Fj,. We are able to improve this result in various ways:

e The metric on configuration space is strenghtened from Fréchet-distance
to Wl2-distance.

o We settle some subtleties concerning the length constraint.

e If certain growth conditions of F', F), can be established, the method yields
convergence rates for Hausdorff distance of argmin(F') and argmin(F,).

As metric space we choose
X ={y e W">([0, L;R™) | v € L>=([0, L];S™ ), 7(0) = P, 7(L) = Q}

with distance

v 3
dxtne) = ([ dbi@p0P ) . e,
0
Both C and C,, are contained in X and we extend F, F;, to X by
F’y, ’)/607 Fn’Y7 ’Yecn,
Py =" Py =40
00, else, 00, else.

In general, define
argmin® (F), = {z € X | Iy € X: F(y) < inf(F) + 6 and dx(z,y) < €}.
Our main result is
Theorem 1. For given length and boundary data, there is ¢ > 0 s. t.
finf(F,) — inf(F)] < =,
argmin(F,) C argmin= (F)e and argmin(F) C argmin= (F),) e

<
n

hold.



If F and F,, grow quadratically at their respective minimizers (which appears
to be the case generically, but we cannot prove this fact yet), this result implies
Hausdorff convergence

argmin(F,) "= argmin(F)

with convergence rate \/g in the metric space X.

The proof of Theorem 1 uses techniques which are very much related to the
notions of epigraph distances and Attouch-Wets-convergence. (See for example
Rockafellar and Wets [2], Chapter 7.) We translate these results to our situation
and obtain the following sufficient conditions for Theorem 1 to hold:

e For every global minimizer v € C of F' there is p € C), with
dx(p.7) < = and Fu(p) < F() +—.

e For every global minimizer p € C, of F,, there is v € C with
dx(3,p) €= and F(3) < Fu(p) + —

Finally, we show that these conditions are actually fulfilled. Two things are
crucial: (i) Minimizers of F' have higher regularity than W22, in particular x’ is
bounded. (ii) The energy F and ||+'||L~ of a curve give £-bounds for the error of
suitably chosen polygonal approximations.
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