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Abstracts

Convergence of Discrete Elastica

Henrik Schumacher

(joint work with Sebastian Scholtes and Max Wardetzky)

The bending energy of a thin, naturally straight, homogeneous and isotropic elastic
rod of length L is given by

F (γ) =

∫ L

0

|κ(s)|2 ds,

where γ : [0, L]→ Rm is the arclength parametrisation and κ = γ′′(s) the curvature
vector. Consider the following boundary value problem: Given points P , Q ∈ Rm
and unit vectors v, w ∈ Sm−1 find the shapes of static elastic curves with clamped
ends and fixed length. Defining the space

C =

{
γ ∈ L2([0, L];Rm)

∣∣∣∣ γ′ ∈ L2([0, L];Sm−1), γ(0) = P, γ(L) = Q,
γ′′ ∈ L2([0, L];Rm), γ′(0) = v, γ′(L) = w

}
,

this can be reformulated to find the minimizers of F : C → R.



A widely used discrete bending energy for a polygonal line p = (p0, p1, · · · , pn)
with pi ∈ Rm is given by

Fn(p) =

n−1∑
i=1

(
ϕi
`i

)2

`i,

where ϕi is the turning angle and `i is given by `i = 1
2 (|pi+1 − pi| + |pi − pi−1|).

We restrict ourselves to evenly segmented polygons, i. e. |pi − pi−1| = L
n for all

i = 1, . . . , n. It is straightforward to formulate a discrete analogon of the boundary
value problem above: Find the minimizers of Fn : Cn → R with the discrete ansatz
space

Cn =

{
(p0, . . . , pn) ∈ (Rm)n

∣∣∣∣ |pi − pi−1| = L
n , p0 = P, pn = Q,

p1 − p0 = L
n v, pn − pn−1 = L

nw

}
.

There has been an attempt by Bruckstein et al. [1] to relate argmin(Fn)
and argmin(F ) via techniques from the theory of epi-convergence. However, epi-
convergence of Fn to F only guarantees that some minimizers of F can be approx-
imated by those of Fn. We are able to improve this result in various ways:

• The metric on configuration space is strenghtened from Fréchet-distance
to W 1,2-distance.
• We settle some subtleties concerning the length constraint.
• If certain growth conditions of F , Fn can be established, the method yields

convergence rates for Hausdorff distance of argmin(F ) and argmin(Fn).

As metric space we choose

X =
{
γ ∈W 1,∞([0, L];Rm) | γ′ ∈ L∞([0, L];Sm−1), γ(0) = P, γ(L) = Q

}
with distance

dX(γ1, γ2) =

(∫ L

0

dSm−1(γ′1(t), γ′2(t))2 dt

) 1
2

, γ1, γ2 ∈ X.

Both C and Cn are contained in X and we extend F , Fn to X by

F (γ) =

{
F (γ), γ ∈ C,
∞, else,

Fn(γ) =

{
Fn(γ), γ ∈ Cn,
∞, else.

In general, define

argminδ(F )ε = {x ∈ X | ∃y ∈ X : F (y) ≤ inf(F ) + δ and dX(x, y) ≤ ε}.

Our main result is

Theorem 1. For given length and boundary data, there is c > 0 s. t.

|inf(Fn)− inf(F )| ≤ c

n
,

argmin(Fn) ⊂ argmin
c
n (F ) c

n
and argmin(F ) ⊂ argmin

c
n (Fn) c

n

hold.
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If F and Fn grow quadratically at their respective minimizers (which appears
to be the case generically, but we cannot prove this fact yet), this result implies
Hausdorff convergence

argmin(Fn)
n→∞−→ argmin(F )

with convergence rate
√

1
n in the metric space X.

The proof of Theorem 1 uses techniques which are very much related to the
notions of epigraph distances and Attouch-Wets-convergence. (See for example
Rockafellar and Wets [2], Chapter 7.) We translate these results to our situation
and obtain the following sufficient conditions for Theorem 1 to hold:

• For every global minimizer γ ∈ C of F there is p ∈ Cn with

dX(p, γ) ≤ c

n
and Fn(p) ≤ F (γ) +

c

n
.

• For every global minimizer p ∈ Cn of Fn there is γ ∈ C with

dX(γ, p) ≤ c

n
and F (γ) ≤ Fn(p) +

c

n
.

Finally, we show that these conditions are actually fulfilled. Two things are
crucial: (i) Minimizers of F have higher regularity than W 2,2, in particular κ′ is
bounded. (ii) The energy F and ‖κ′‖L∞ of a curve give c

n -bounds for the error of
suitably chosen polygonal approximations.
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