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It has been known to the numerics community for some time that discretizations of
smooth differential complexes such as the de Rham complex yield very stable meth-
ods for approximating solutions to partial differential equations (cf. Arnold [1]).
Among the most notable such discretizations are Whitney elements. Given a lo-
cally finite C∞ triangulation of a smooth manifold M , Whitney [11] defined a
certain linear map W from the simplicial cochains Cq induced by this triangula-
tion to L2Λq, a chain map in the sense that dW = W δ, where d is the Cartan
outer differential. Dozdizuk and Patodi [4][5] observed that this map together with
a Riemannian metric g on a compact smooth manifold M gives rise to a positive
definite inner product on simplicial cochains, and hence a discrete Hodge decom-
position (using the inner product on simplicial cochains to define adjoint operators
to the simplicial coboundary operators). Then under (suitable) refinement of the
triangulation of M , the discrete Hodge decomposition converges to the smooth
one on (M, g). Recently Wilson [12] has extended these results by a (converging)
discrete wedge product on simplicial cochains and a (converging) combinatorial
Hodge star operator.

Whitney elements are piecewise linear by construction. Here we report on a differ-
ent development using piecewise constant vector fields (or one forms) on compact
polyhedral surfaces. The function spaces corresponding to a discrete Hodge decom-
position then turn out to be a mixture of conforming and nonconforming linear
elements. For sequences of polyhedral surfaces whose positions and normals con-
verge to the positions and normals of a compact smooth surface embedded in
E3, we report on a convergence result for the corresponding discrete Hodge de-
compositions and Hodge star operators. The proof is mainly based on showing
that the convergence results of Dodziuk/Patodi and Wilson remain valid if one
works with variable (and converging) metrics (M, gn), instead of a fixed one. The
motivation to investigate into piecewise constant structures here is that piecewise
constant harmonic fields come in pairs of a conforming and a nonconforming ver-
sion, much alike linear models of discrete minimal surfaces [9] which also turn out
to come in pairs of a conforming and a conjugate nonconforming minimal surface.
Finally we remark that one finds strong similarities between the current analytic
approach of discretizing function spaces (using the duality between conforming
and nonconforming elements) and an algebraic approach (using the duality be-
tween primal and dual graphs), such as pursued by Desbrun et al. [3], Mercat [8],
Dynnikov/Novikov [6], and others.

By a polyhedral surface Mh we mean the result of isometrically gluing flat Eu-
clidean triangles along their boundaries such that the result is homeomorphic to a
topological 2-manifold. As usual, h denotes the mesh size (a notation which goes

1



back at least to [2]). We only consider orientable surfaces. The Euclidean struc-
ture on triangles induces a Euclidean cone structure on Mh. The triangulation
gives rise to the following function spaces:

Sh = {u ∈ C0(Mh) |u is linear on triangles},
S∗h = {u ∈ L2(Mh) |u is linear on triangles and continuous at edge midpoints},
Xh = {X is tangential and constant on all individual triangles}.

Clearly, Sh ⊂ S∗h. The space Sh is called conforming, and S∗h is called noncon-
forming. Finally, Xh denotes the space of piecewise constant vector fields. The
cone metric on Mh induces a L2-inner product on each of these spaces.

The gradient of a function in Sh or S∗h is well-defined on triangles and takes
values in Xh. Let div denote the adjoint operator to grad : Sh → Xh with
respect to the L2-inner products. Similarly, let div* denote the adjoint operator
to grad : S∗h → Xh. Complex multiplication J acts on Xh by rotation by π/2 on
each individual triangle. Set curl = −div ◦ J, and curl* = −div* ◦ J. It is not
difficult to see that for X ∈ Xh, the terms curl*X and div*X are measures for
the tangential and normal jumps of X across edges of Mh, respectively. If Mh

is closed (has empty boundary), one obtains the following (mutually L2-adjoint)
chain complexes:

0 −−−−→ Sh
grad−−−−→ Xh

curl*−−−−→ S∗h −−−−→ 0

0 ←−−−− Sh
div←−−−− Xh

J grad←−−−− S∗h ←−−−− 0.

Lemma. The homology groups for (each of) the above chain complexes are iso-
morphic to the respective simplicial homology groups. This gives the following two
discrete Hodge decompositions of Xh:

Xh = im grad|Sh
⊕ im J grad|S∗

h

⊕ ker curl* ∩ ker div

= im J grad|Sh
⊕ im grad|S∗

h

⊕ ker div* ∩ ker curl,

where the second row is the J-transformed version of the first.

By construction, the sum is orthogonal with respect to the L2-inner product
on Xh. The space H(Mh; R) = ker curl* ∩ ker div is termed conforming harmonic,
and the space H∗(Mh; R) = ker div* ∩ ker curl is termed nonconforming harmonic.
The dimension of each of these spaces equals twice the genus of Mh. Note that
complex multiplication J acts as a linear isomorphism between these two spaces.
In a similar fashion to [12], one defines a discrete Hodge star operator on H(Mh; R)
by first applying J and then L2-projecting back to H(Mh; R),

? : H(Mh; R) −→ H(Mh; R).

In other words, if X ∈ H(Mh; R), then ?X is the conforming harmonic part of
J(X). Note that ?? 6= −Id. However, ? is still an isomorphism. There exists a
similar nonconforming version.
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Convergence. Let (M, g) be compact smooth surface embedded into E3 which
inherits its metric structure from ambient space. A polyhedral surface Mh in a
(small enough) tubular of M is a normal graph if Mh can be viewed as a section
in the normal bundle of M . A sequence of normal graphs {Mn} converges totally
normally ([7][10]) to M if the positions of Mn converge in Hausdorff distance and
the normals of Mn converge in L∞ to those of M . Using the pullback from Mn to
M , the surface M inherits a sequence of cone metrics {gn} coming from {Mn}.

Lemma. If Mn →M totally normally, and X,Y are vector fields on M then

sup
X,Y

∥∥∥∥ |gn(X,Y )− g(X,Y )|
‖X‖g · ‖Y ‖g

∥∥∥∥
∞
−→ 0.

Under the pullback fromMn toM , our objects are defined a.e. onM . In particular,
let Πn be the L2-projections of smooth vector fields on M to piecewise constant
fields on M associated with a totally normally converging sequence {Mn}. Then:

Theorem. In L2(M), the components of the discrete Hodge splittings of Πn(X)
converge to the components of the smooth Hodge splitting of X. Moreover, if h is
harmonic on (M, g) and hn is the conforming harmonic part of Πn(h) then ?nhn

converges to ?h. Finally, H∗(Mn; R) tends to H(Mn; R), insofar as Jn hn → ?nhn.

On the one hand the proof is based showing that the convergence results proved
in [4][5][12] remain true for variable and converging metrics gn, and on the other
hand on relating the Hodge splitting of Whitney elements to the Hodge splitting
of piecewise constant elements. In a similar fashion one obtains convergence for
the spectral decomposition of Laplacians. For details we refer to [10].
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