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N THIS CHAPTER WE REVIEW SOME IMPORTANT PROPERTIES OF LAPLACIANS,

SMOOTH AND DISCRETE. WE PLACE SPECIAL EMPHASIS ON A UNIFIED FRAME-
WORK FOR TREATING SMOOTH LAPLACIANS ON RIEMANNIAN MANIFOLDS ALONG-
SIDE DISCRETE LAPLACIANS ON GRAPHS AND SIMPLICIAL MANIFOLDS. WE CAST
THIS FRAMEWORK INTO THE LANGUAGE OF LINEAR ALGEBRA, WITH THE IN-
TENT TO MAKE THIS TOPIC AS ACCESSIBLE AS POSSIBLE. WE COMBINE PERSPEC-
TIVES FROM SMOOTH GEOMETRY, DISCRETE GEOMETRY, SPECTRAL ANALYSIS,
MACHINE LEARNING, NUMERICAL ANALYSIS, AND GEOMETRY PROCESSING WITHIN
THIS UNIFIED FRAMEWORK. THE CONNECTION TO GENERALIZED BARYCENTRIC
COORDINATES IS ESTABLISHED THROUGH HARMONIC FUNCTIONS THAT INTERPO-
LATE GIVEN BOUNDARY CONDITIONS.
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5.1 INTRODUCTION

The Laplacian is perhaps the prototypical differential operator for various physical
phenomena. It describes, for example, heat diffusion, wave propagation, steady
state fluid flow, and it is key to the Schrodinger equation in quantum mechanics.
In Euclidean space, the Laplacian of a smooth function u : R™ — R is given as the
sum of second partial derivatives along the coordinate axes,

Ay = — @J’_@_A'_ +@
YT\ 027 T 0 922 )’

where we adopt the geometric perspective of using a minus sign.

5.1.1 Basic properties

The Laplacian has many intriguing properties. For the remainder of this exposition,
consider an open and bounded domain €2 C R™ and the L? inner product

(r0):= [ s

on the linear space of square-integrable functions on Q. Let u,v : @ — R be
two (sufficiently smooth) functions that vanish on the boundary of 2. Then the
Laplacian A is a symmetric (or, to be precise, a formally self-adjoint) linear operator
with respect to this inner product since integration by parts yields

(u, Av) = /QVU -V = (Au,v). (Sym)

Here V denotes the standard gradient operator and Vu - Vv denotes the standard
inner product between vectors in R™. The choice of using a minus sign in the
definition of the Laplacian makes this operator positive semi-definite since

(u, Au) = /QVU -Vu > 0. (Psp)

If one restricts to functions that vanish on the boundary of €2, (PsD) implies that the
only functions that lie in the kernel of the Laplacian (Au = 0) are those functions
that vanish on the entire domain. Moreover, properties (SYM) and (PSD) imply
that the Laplacian can be diagonalized and its eigenvalues are nonnegative,

Au= A u= A>0.

Another prominent property of smooth Laplacians is the maximum principle. Let
u: ) = R be harmonic, i.e., Au = 0. The maximum principle asserts that

u is harmonic = wu has no strict local maximum in (2, (MAX)

where we no longer assume that u vanishes on the boundary of 2. Likewise, no
harmonic function can have a local minimum in 2.
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The maximum principle can be derived from another important property of
harmonic functions, the mean value property. Consider a point x € €2 and a closed
ball B(x,r) of radius r centered at x that is entirely contained in 2. Every harmonic
function has the property that the value u(x) can be recovered from the average of
the values of w in the ball B(x,r):

1
U(X) B VO](B(X’ ’I")) /B(x,r) U(y)dy

A simple argument by contradiction shows that the mean value property implies
property (MaX).

The properties mentioned so far play an important role in applications; specif-
ically, in the context of barycentric coordinates, they give rise to harmonic coor-
dinates and mean value coordinates, see [26, 34, 35]. Below we discuss additional
properties of Laplacians. For further reading we refer to the books [5, 25, 43] and
the lecture notes [12, 17].

5.2 LAPLACIANS ON RIEMANNIAN MANIFOLDS

The standard Laplacian in R™ can be expressed as

Au = —div Vu,

where div is the usual divergence operator acting on vector fields in R™. Written
in integral form, the negative divergence operator is the (formal) adjoint of the
gradient: If X is a vector field and u : Q — R is a function that vanishes on the

boundary of €2, then
/ Vu-X = / u (—divX).
Q Q

This perspective can be generalized to Riemannian manifolds, which incorporate
the notion of curvature. The Laplacian plays an important role in the study of these
curved spaces.

5.2.1 Exterior calculus

Although gradient and divergence can readily be defined on Riemannian manifolds,
it is more convenient to work with the differential (or exterior derivative) d instead
of the gradient and with the codifferential d* instead of divergence.

The differential d is similar to (but not the same as) the gradient. Indeed, given
a function u : © — R, one has

du(X)=Vu-X

for every vector field X. In particular, the differential does not require the notion of
a metric, whereas the gradient does. The codifferential d* is defined as the formal
adjoint (informally, transpose) to d, in the same way as divergence is the adjoint
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of the gradient. In contrast to the divergence operator, which acts on vector fields,
the codifferential d* acts on 1-forms. A 1-form is a covector at every point of €2, i.e.,
if X is a vector field on Q and « is a 1-form, then «(X) is a real-valued function
on €. In order to define the codifferential d*, consider a 1-form a and a function
u : 0 — R that vanishes on the boundary of 2. Then

/du-a:/ud*a,
Q Q

where the dot product is the inner product between covectors induced from the
inner product between vectors. Notice that different from the differential d, the
codifferential does require the notion of a metric. The Laplacian of a function u can
be expressed as

Au = d*du,

which is equivalent to the representation Au = —divVu given above.

In order to carry over this framework to manifolds, let M be a smooth orientable
manifold with smooth Riemannian metric g. Suppose for simplicity that M is com-
pact and has empty boundary. The Riemannian metric induces a pointwise inner
product between tangent vectors on M, which, analogously to the above discussion,
induces an inner product between 1-forms. More generally, one works with k-forms
for £ > 0. A 0-form, by convention, is a real-valued function on M. A 1-form can
be thought of as an oriented 1-volume in the sense that applying a 1-form to a
vector field returns a real value at every point. Likewise, a k-form for £ > 1 can be
thought of as an oriented k-volume in the sense of returning a real number at every
point when applied to an ordered k-tuple (parallelepiped) of tangent vectors. As a
consequence, k-forms can be integrated over (sub)manifolds of dimension k. In the
sequel we let AF denote the linear space of k-forms on M.

Analogous to the L? inner product between function in R”, let

(o, By := /M g(a, B)vol,

denote the L? inner product between k-forms a and 8 on M, where, by slight
abuse of notation, we let g(a, ) denote the (pointwise) inner product induced by
the Riemannian metric.

The differential d : A¥ — A*+1 maps k-forms to (k+1)-forms for 0 < k < dimM,
where one sets da = 0 for any k-form with £ = dimM. One can define the differential
acting on k-forms by postulating Stokes’ theorem,

/da:/ a,
U oU

for every k-form « and every (sufficiently smooth) submanifold U € M of dimension
(k + 1) with boundary OU. If one asserts this equality as the defining property of
the differential d, then it immediately follows that d o d = 0 since the boundary of
a boundary of a manifold is empty (9(0U) = 0).

The codifferential d*, taking (k+1)-forms back to k-forms, is the (formal) adjoint
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of d with respect to the L? inner products on k- and (k + 1)-forms. It is defined by
requiring that

(da7 ﬁ)k+1 = (057 d*ﬁ)k
for all k-forms « and all (k + 1)-forms S. Finally, the Laplace—Beltrami operator
A : A* — A¥ acting on k-forms is defined as

Aa :=dd*a + d*da.

Notice that this expression reduces to Au = d*du for 0-forms (functions) on M. It
follows almost immediately from the definition of the Laplacian that a k-form « is
harmonic (Aa = 0) if and only if « is closed (da = 0) and co-closed (d*a = 0).

From a structural perspective it is important to note that properties (Sym),
(Psp), and (MAX) mentioned earlier remain true (among various other properties)
in the setting of Riemannian manifolds. For further details on exterior calculus and
the Laplace—Beltrami operator, we refer to [43].

5.2.2 Hodge decomposition
Every sufficiently smooth k-form o on M admits a unique decomposition
a=du+dv+h,

known as the Hodge decomposition (or Hodge—Helmholtz decomposition), where p
isa (k—1)-from, v is a (k+1)-form and h is a harmonic k-form. This decomposition
is unique and orthogonal with respect to the L? inner product on k-forms,

0= (du,d*v)i = (h,du)r = (h,d*v)x,

which immediately follows from the fact that d o d = 0 and the fact that harmonic
forms satisfy dh = d*h = 0. The Hodge decomposition can be thought of as a
(formal) application of the well-known fact from linear algebra that the orthogonal
complement of the kernel of a linear operator is equal to the range of its adjoint
(transpose) operator.

By duality between vector fields and 1-forms, the Hodge decomposition for 1-
forms carries over to a corresponding decomposition for vector fields into curl-free
and divergence-free components, which has applications for fluid mechanics [3] and
Maxwell’s equations for electromagnetism [29].

Geometrically, the Hodge decomposition establishes relations between the
Laplacian and global properties of manifolds. Indeed, the linear space of harmonic
k-forms is finite-dimensional for compact manifolds and isomorphic to H*(M;R),
the k-th cohomology of M. As an application of this fact, consider a compact ori-
entable surface without boundary. Then the dimension of the space of harmonic
1-forms is equal to twice the genus of the surface, that is, this dimension is zero
for the 2-sphere, two for the two-dimensional torus, four for a genus two surface
(pretzel) and so on. Hence the Laplacian provides global information about the
topology of the underlying space.

For a thorough treatment of Hodge decompositions, including the case of man-
ifolds with boundary, we refer to [45].
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5.2.3 The spectrum

One cannot speak about the Laplacian without discussing its spectrum. On a com-
pact orientable manifold without boundary, it follows from the inequality

(Au,u)p = (du,du); >0

that the spectrum is nonnegative and that the only functions in the kernel of the
Laplacian are constant functions. Thus zero is a trivial eigenvalue of the Laplacian
with a one-dimensional space of eigenfunctions. The next (non-trivial) eigenvalue
A1 > 0 is much more interesting. By the min-max principle, this eigenvalue satisfies

Al = min 7(du,du)1
(u,1)0=0 (u,u)o

where one takes the minimum over all functions that are L2-orthogonal to the
constants. Higher eigenvalues can be obtained by successively applying the min-max
principle to the orthogonal complements of the eigenspaces of lower eigenvalues.
The first non-trivial eigenvalue already tells a great deal about the geometry of
the underlying Riemannian manifold. As an example, consider Cheeger’s isoperi-

metric constant
A¢ = inf { - voln1(N) } ,
N | min(vol, (M), vol,, (Ms))

where N runs over all compact codimension-1 submanifolds that partition M into
two disjoint open sets M7 and My with N = OM; = M. Intuitively, the optimal
N for which A¢ is attained partitions M into two sets that have maximal volume
and minimal perimeter. As an example, suppose that M has the shape of the surface
of a smooth dumbbell. Then N is a curve going around the axis of the dumbbell at
the location where the dumbbell is thinnest.

A relation of Cheeger’s constant to the first non-trivial eigenvalue of the Lapla-
cian is provided by the Cheeger inequalities

2
%0 <A < (K)o + A2,

where the constant ¢ only depends on dimension and K > 0 provides a lower bound
on the Ricci curvature of M in the sense that Ric(M,g) > —K?(n—1); see [11, 14].
Recall that for surfaces, Ricci curvature and Gaufl curvature coincide. The first
non-trivial eigenvalue of the Laplacian is thus related to the metric problem of
minimal cuts—thus providing a relation between an analytical quantity (the first
eigenvalue) and a purely geometric quantity (the Cheeger constant). Intuitively, if
A1 is small, then M must have a small bottleneck; vice-versa, if A; is large, then M
is somewhat thick.

Equipped with the full set of eigenfunctions {¢;} of the Laplace-Beltrami op-
erator, one can perform Fourier analysis on manifolds by decomposing any square-
integrable function u into its modes,

u= Z(%%‘)o%%

K2
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provided that one chooses the eigenfunctions such that (¢;, ;) = d;;. (Notice that
(pi, )0 = 0 is automatic for eigenfunctions belonging to different eigenvalues.)
The Fourier perspective is of great relevance in signal and geometry processing.
Maintaining a spectral eye on geometry, it is natural to ask the inverse question:
How much geometric information can be reconstructed from information about the
Laplacian? If the entire Laplacian is known on a smooth manifold, then one can
reconstruct the metric, for example, by using the expression of A in local coordi-
nates. If, however, “only” the spectrum is known, then less can be said in general.
For example, Kac’s famous question Can one hear the shape of a drum? [36], that
is, whether the entire geometry can be inferred from the spectrum alone, has a
negative answer: There exist isospectral but non-isometric manifolds [31, 46].

5.3 DISCRETE LAPLACIANS

Discrete Laplacians can be defined on simplicial manifolds or, more generally, on
graphs. We treat the case of graphs first and discuss simplicial manifolds further
below.

5.3.1 Laplacians on graphs

Consider an undirected graph I' = (V, E) with vertex set V' and edge set E. For
simplicity we only consider finite graphs here. Suppose that every edge e € F
between vertices i € V and j € V carries a real-valued weight w, = w;; = wj; € R.
We discuss below how weights can be chosen; suppose for now that such a choice
has been made. A discrete Laplacian acting on a function u : V' — R is defined as

(Lu)i ==Y wij(u; — uy), (5.1)

g

where the sum ranges over all vertices j that are connected by an edge with vertex
i.1 This allows for representing the linear operator L as a matrix by

—Wij if there is an edge between ¢ and j,
Lij = kaiwik le :j,
0 otherwise.

The matrix L is called the discrete Laplace matrix. This definition may seem to
come a bit out of the blue. In order to see how it relates to smooth Laplacians,
consider again the smooth case and the quantity

1
Boli) = [ IVul?

1Some authors include a division by vertex weights in the definition of Laplacians on graphs.
Such a division arises naturally when considering strongly defined Laplacian, instead of weakly
defined Laplacians. We cover this distinction below.



84 m Generalized Barycentric Coordinates inComputer Graphics and Computational Mechanics

which is known as the Dirichlet energy of u. In the discrete setup, one may discretize
the gradient Vu along an edge e = (4, j) as the finite difference (u;—u;). Accordingly,
one defines discrete Dirichlet energy as

1
ED[U] = § Zwij(ui — Uj)z,
ecE

where the sum ranges over all edges. One then has

(discrete) Eplu] = %UTL’U, vs. (smooth) Eplu] = =(u, Au)g,

1
2
which justifies calling L a Laplace matrix. Due to this representation (and using
the language of partial differential equations [25]) we call discrete Laplacians of the
form (5.1) weakly defined instead of strongly defined. We return to this distinction
below.

Weakly defined discrete Laplacians of the form (5.1) are always symmetric—
they satisfy (SYM) due to the assumption that w;; = wj;. However, whether or not
a discrete Laplacian satisfies (at least some of) the other properties of the smooth
setting heavily depends on the choice of weights.

The simplest choice of weights is to set w;; = 1 whenever there is an edge
between vertices i and j. This results in the so-called graph Laplacian. The diagonal
entries of the graph Laplacian are equal to the degree of the respective vertex, that
is, the number of edges adjacent to that vertex. The graph Laplacian is just a special
case of what we call a Laplacian on graphs here.

Positive edge weights are a natural choice if weights resemble transition prob-
abilities of a random walker. Discrete Laplacians with positive weights are always
positive semi-definite (PsD) and, just like in the smooth setting, they only have the
constant functions in their kernel provided that the graph is connected. As a word
of caution we remark that positivity of weights is not necessary to guarantee (PsD).
Below we discuss Laplacians that allow for (some) negative edge weights but still
satisfy (PsD).

Laplacians with positive edge weights always satisfy the mean value property
since every harmonic function u (a function for which Lu = 0) satisfies
U; = Zlij’u]' with lij = (ZZJ

jri

> 0.

7

Therefore, discrete Laplacians with positive weights also satisfy the maximum prin-
ciple (MAX) since »,_; li; = 1 and thus u; is a convex combination of its neighbors
u; for discrete harmonic functions. This convex combination property establishes
a connection between Laplacians and barycentric coordinates via the partition of
unity property.

5.3.2 The spectrum

As in the smooth case, one cannot discuss discrete Laplacians without mentioning
their spectrum and their eigenfunctions, which provide a fingerprint of the structure
of the underlying graph.
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As an example consider again Cheeger’s isoperimetric constant. In order to
define this constant in the discrete setting consider a partitioning of I" into two
disjoint subgraphs I'; and T'; such that the vertex set V of I is the disjoint union of
the vertex sets V4 of I'; and V; of T'y. Here a subgraph of I' denotes a graph whose
vertex set is a subset of the vertex set of I' such that two vertices in the subgraph
are connected by an edge if and only if they are connected by an edge in I'. For
positive edge weights, the discrete Cheeger constant (sometimes called conductance
of a weighted graph) is defined as

VOl(Fl,fl) }

Ac = min { min(vol(I'y), vol(T1))

where

vol(I'1,Ty) := Z wi; and vol(T') := Z Wij,
i€VILigVi i€V, jEVH

and similarly for vol(I'y). Notice that for the case of the graph Laplacian vol(I';)
equals twice the number of edges in T'; and vol(T'y, f‘l) equals the number of edges
with one vertex in I'; and another vertex in its complement.?

Similar to the smooth case, one then obtains the Cheeger inequalities

A2 ~
70 <A <2,

where 5\1 is the first nontrivial eigenvalue of the rescaled Laplace matrix
L:=SLS,

where S is a diagonal matrix with S;; = 1/,/w;;. This rescaling is necessary since
Ac is invariant under a uniform rescaling of edge weights (and so is L), whereas L
scales linearly with the edge weights. A proof of the discrete Cheeger inequalities
for the case of the graph Laplacians (w;; = 1) can be found in [16]; the proof for
arbitrary positive edge weights is nearly identical.

The Cheeger constant—and alongside the corresponding partitioning of I" into
the two disjoint subgraphs I'y and T';—has applications in graph clustering, since
the edges connecting 'y and T'; tend to “cut” the graph along its bottleneck [37].

Any discrete Laplacian (having positive edge weights or not) that satisfies (Sym)
and (Psp) can be used for Fourier analysis on graphs. Indeed, let {¢;} be the
eigenfunctions of L, chosen such that ¢ ¢; = &;;. Then one has

u= Z(UT%‘)%‘,

K2

just like in the smooth setting. This decomposition of discrete functions on graphs

2Some authors use a different version of the respective volumes in the definition of the Cheeger
constant, resulting in different versions of the Cheeger inequalities; see [47].
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into their Fourier modes has a plethora of applications in geometry processing;
see [39] and references therein.

As in the smooth setting, it is natural to ask the inverse question of how much
geometric information can be inferred from information about the Laplacian. Recall
that in the the smooth case, knowing the full Laplacian allows for recovering the
Riemannian metric. Similarly, in the discrete case it can be shown that for simplicial
surfaces the knowledge of the cotan weights for discrete Laplacian (coverered below)
allows for reconstructing edge lengths (i.e., the discrete metric) of the underlying
mesh up to a global scale factor [53]. If, however, only the spectrum of the Laplacian
is known, then there exist isospectral but non-isomorphic graphs [10]. In fact, for
the case of the cotan Laplacian (see below), the exact same isospectral domains
considered in [31] that were originally proposed for showing that “One cannot hear
the shape of a drum” for smooth Laplacians work in the discrete setup.

A curious fact concerning the connection between discrete Laplacians and the
underlying geometry is Rippa’s theorem [42]: The Delaunay triangulation of a fixed
point set in R™ minimizes the Dirichlet energy of any piecewise linear function
over this point set. In [15], this result is taken a step further, where the authors
show that the spectrum of the cotan Laplacian obtains its minimum on a Delaunay
triangulation in the sense that the i-th eigenvalue of the cotan Laplacian of any
triangulation of a fixed point set in the plane is bounded below by the i-th eigenvalue
resulting from the cotan Laplacian associated with the Delaunay triangulation of
the given point set.

5.3.3 Laplacians on simplicial manifolds

Recall that in the smooth case, Laplacians acting on k-forms take the form
A =dd" + d*d.

In order to mimic this construction in the discrete setting, one requires a bit more
structure than just an arbitrary graph. To this end, consider a simplicial manifold,
such as a triangulated surface. We keep referring to this manifold as M. As in the
smooth case, for simplicity, suppose that M is orientable and has no boundary.

Simplicial manifolds allow for a natural definition of discrete k-forms as duals
of k-cells. Indeed, every O-form is a function defined on vertices, a 1-form « is dual
to edges, that is, a(e) is a real number for any oriented 1-cell (oriented edge), a
2-form is dual to oriented 2-cells, and so forth. In the sequel, let the linear space of
discrete k-forms (better known as simplicial cochains) be denoted by C*.

As in the smooth case, the discrete differential § (better known as the cobound-
ary operator) maps discrete k-forms to discrete (k + 1)-forms, § : Ck — Ck+1,
Again as in the smooth case, the discrete differential can be defined by postulating
Stokes’ formula: Let a be a discrete k-form. Then one requires that

da(o) = a(0o)

for all (k + 1)-cells o, wehere 9 denotes the simplicial boundary operator. The
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simplicial boundary operator, when applied to a vertex returns zero (since vertices
do not have a boundary). When applied to an oriented edge, the boundary operator
returns the difference between the edge’s vertices. Likewise, 0 applied to an oriented
2-cell o returns the sum of oriented edges of o (with the orientation induced by
that of o). Since the boundary of a boundary is empty (0od = 0) one has §od = 0,
just like in the smooth case. Notice that the definition of § does not require the
notion of inner products.

In order to define the discrete codifferential §* one additionally requires an
inner product (-,-); on the linear space of k-forms for each k. Below we discuss
the construction of such inner products. Given a fixed choice of inner products on
discrete k-forms, the codifferential is defined by requiring that

(0a, B)ks1 = (a, 0" B)

for all k-forms « and all (k+ 1)-forms 3, and the discrete strongly defined Laplacian
acting on k-forms takes the form

L = §6% + 6%0. (5.2)

This perspective is that of discrete exterior calculus (DEC) [17, 19], where—by
slight abuse of notation—inner products are referred to as “discrete Hodge stars”.

Strongly defined Laplacians are self-adjoint with respect to the inner products
(+,*)x on discrete k-forms, since

(Le, B)k = (6ct,68)k+1 + (67, 6" B)p—1 = (a, LB)y.
Moreover, strongly defined Laplacians are always positive semi-definite (PsD), since
(La, o)k = (0a, 6041 + (6%, 6" a)g—1 > 0.

In particular, a discrete k-form is harmonic (La = 0) if and only if da = §*a = 0,
just like in the smooth setting.

5.3.4 Strongly and weakly defined Laplacians

Every strongly defined Laplacian as given by (5.2) has a weakly defined cousin L
acting on discrete functions u. The weak version is obtained by requiring that at
every vertex i the resulting function Lu is equal to

(L’U,)z = (]Lu, 17,)0 = (5*511,7 11)0 = (5U751i)17

where 1; is the indicator function of vertex ¢. In particular, let Mgy and M; be
the symmetric positive definite matrices that encode the inner products between
0-forms and 1-forms, respectively,

(u,v)g = uMov and (o, )1 = aTM;6.
Then the weakly and strongly defined Laplacians satisfy, respectively,
L=¢6"M;§ and L =M;'L.
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As an example, consider diagonal inner products on 0-forms and 1-forms,

(u,v)g = Zmiuivi and (o, ) = Zwea(e)ﬁ(e),

eV ecE

with positive vertex weights m; > 0 and positive edge weights w, > 0. The resulting
strongly defined Laplacian acting on 0-forms (functions) takes the form

(Lu); = mi > wij(ui — uy)

(A
J~

and its associated weakly defined cousin is the Laplacians on graphs defined in (5.1).
In particular, if w. = 1, one recovers the graph Laplacian as the weak version.

5.3.5 Hodge decomposition

Given a choice of inner products for k-forms on simplicial manifolds, one always
obtains a discrete Hodge decomposition. Indeed, for every discrete k-form « one
has

a=0u+8v+h,

where p is a (k — 1)-from, v is a (k+ 1)-form and h is a harmonic k-from (Lh = 0).
As in the smooth case, not only is this decomposition unique, it is also orthogonal
with respect to the inner products on k-forms,

0=(0u,d"v)r = (h,0u)r = (h,0"v)g,

which immediately follows from § o § = 0 and the fact that harmonic forms satisfy
oh=6*h=0

Akin to the smooth case, the Hodge decomposition establishes relations to global
properties of simplicial manifolds, since the linear space of harmonic k-forms is
isomorphic to the k-th simplicial cohomology of the simplicial manifold M. Again, as
an application of this fact, consider a compact simplicial surface without boundary.
Then the dimension of the space of harmonic 1-forms is equal to twice the genus of
the surface—independent of the concrete choice of inner products on k-forms.

5.3.6 The cotan Laplacian and beyond

We conclude the discussion of Laplacians on simplicial manifolds by providing an
important example of inner products. In [51], Whitney constructs a map from sim-
plicial k-forms (k-cochains) to piecewise linear differential k-forms. In a nutshell,
the idea is to linearly interpolate simplicial k-forms across full-dimensional cells. As
the simplest example, consider linear interpolation of 0-forms (functions) on ver-
tices. This kind of interpolation can be extended to arbitrary k-forms. The resulting
map

W . CF — L2AF
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takes simplicial k-forms to square-integrable k-forms on the simplicial manifold,
where we assume each simplex to carry the standard Euclidean structure. The
Whitney map is the right inverse of the so-called de Rham map,

a(c) = /a W(a)

for all discrete k-forms « and all k-cells 0. For details we refer to [51]. The Whitney
map W is a chain map—it commutes with the differential (d W = WJ) and thus
factors to cohomology.

Dodziuk and Patodi [22] use the Whitney map in order to define an inner
product on discrete k-forms (k-cochains) by

(o, B := /A (W WB)val,,

where (in our case) g denotes a piecewise Euclidean metric on the simplicial mani-
fold. From the perspective of the Finite Element Method (FEM), Whitney’s con-
struction is a special case of constructing stable finite elements; see [2].
For triangle meshes the resulting strongly defined Laplacian acting on O-forms
(functions) takes the form
L=M;'L,

where M is the mass matriz given by

12' if i~ 3,
(M), :== i ifi=
0/45 6 Js

0 otherwise.

Here A;; denotes the combined area of the two triangles incident to edge (4, j) and
A; is the combined area of all triangles incident to vertex i. The corresponding
weakly defined Laplacian L is the stiffness matriz with entries

— 3 (cot aj; + cot By;) if i ~ 7,
Lij = _iji Lij if 4 :j7
0 otherwise,

where «;; and f;; are the two angles opposite to edge (4, j). The matrix L is often
referred to as the cotan Laplacian.

The cotan Laplacian has been rediscovered many times in different con-
texts [23, 24, 41]; the earliest explicit mention seems to go back to MacNeal [40],
but perhaps it was already known at the time of Courant. The cotan Laplacian has
been enjoying a wide range of applications in geometry processing (see [17, 39, 44]
and references therein), including barycentric coordinates, mesh parameterization,
mesh compression, fairing, denoising, spectral fingerprints, shape clustering, shape
matching, physical simulation of thin structures, and geodesic distance computa-
tion.
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The construction of discrete Laplacians based on inner products can be extended
from simplicial surfaces to meshes with (not necessarily planar) polygonal faces;
see [1] for such an extension that is similar to the approach considered in [8, 9]
for planar polygons. The cotan Laplacian has furthermore been extended to semi-
discrete surfaces [13] as well as to subdivision surfaces [18].

5.3.7 Discrete versus smooth Laplacians

Structural properties of discrete Laplacians play an important role for computa-
tions, e.g., when solving the Poisson problem

Lu=f

for a given right hand side f and an unknown function u with Dirichlet boundary
conditions. For solving this problem, one often prefers to work with the weak for-
mulation of the problem (Lu = M f) instead of the strong one (Lu = f) since the
weakly defined cousins of strongly defined Laplacians satisfy properties (Sym) and
(PsD), which allows for efficient linear solvers for this problem.

We now turn to the question of which properties are desirable for discrete Lapla-
cians on top of (SyM) and (Psp) and if it is furthermore possible to recover all
properties of smoth Laplacians in the discrte case. We follow [50], on which this
section is largely based.

Smooth Laplacians are differential operators that act locally. Locality can be
represented in the discrete case by working with (weakly defined) discrete Lapla-
cians based on edge weights:

vertices ¢ and j do not share an edge = w;; = 0. (Loc)

This property reflects locality of action by ensuring that if vertices ¢ and j are not
connected by an edge, then changing the function value u; at a vertex j does not
alter the value (Lu); at vertex . Property (LOC) results in sparse matrices, which
can be treated efficiently in computations.

Keeping an eye on the relation between discrete Laplacians and barycentric
coordinates, it is desirable (or even mandatory) to require linear reproduction. In
the smooth setting, linear reproduction corresponds to the fact that linear functions
on R”™ are in the kernel of the standard Laplacian on Euclidean domains. For discrete
Laplacians on a graph I, linear reproduction means that (Lu); = 0 at each interior
vertex whenever I' is embedded into the plane with straight edges and w is a linear
function on the plane, point-sampled at the vertices of T,

I' ¢ R? embedded and u : R? — R linear = (Lu); = 0 at interior vertices. (LIN)

In applications this property is desirable for de-noising of surface meshes [20] (where
one expects to remove normal noise only but not to introduce tangential vertex
drift), mesh parameterization [27] (where one expects planar regions to remain
invariant under parameterization), and plate bending energies [44] (which must
vanish for flat configurations).
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Furthermore, it is often natural and desirable to require positive edge weights:
vertices ¢ and j share an edge = w;; > 0. (Pos)

This requirement implies (PsD) and is a sufficient (but by no means necessary)
condition for a discrete mazimum principle (MAX). In diffusion problems corre-
sponding to uy = —Au, (P0OS) ensures that flow travels from regions of higher
potential to regions of lower potential. Additionally, as discussed above, positive
edge weights establish a connection to barycentric coordinates.

The combination(LocC)+(SyM)+(Pos) is related to Tutte’s embedding theorem
for planar graphs [32, 48]: Positive weights associated to edges yield a straight-line
embedding of an abstract planar graph for a fixed convex boundary polygon. Tutte’s
embedding is unique for a given set of positive edge weights, and it satisfies (LIN)
by construction since each interior vertex (and therefore its - and y-coordinate) is
a convex combination of its adjacent vertices with respect to the given edge weights.

It is natural to ask, which of the properties (Loc), (Sym), (Pos), and (LIN) are
satisfied by the discrete Laplacians considered so far.

As the simplest example consider again the graph Laplacian (w;; = 1). This
Laplacian clearly satisfies (LoC)+(Sym)+(Pos), but in general fails to satisfy
(LIN). Next, consider the cotan Laplacian. The edge weights of the cotan Laplacian
turn out to be a special case of weights arising from orthogonal duals. To define
those, consider a graph embedded into the plane with straight edges that do not
cross. An orthogonal dual is a realization of the dual graph in the plane, with
straight edges orthogonal to primal edges (viewed as vectors in the plane). Edge
weights can then be constructed as the ratio between the signed lengths of dual
edges and the unsigned lengths of primal edges,

Here, |e| denotes the usual Euclidean length, whereas |x e| denotes the signed Eu-
clidean length of the dual edge. The sign is obtained as follows. The dual edge e
connects two dual vertices xf; and % f3, corresponding to the primal faces f; and
fa, respectively. The sign of |x e| is positive if along the direction of the ray from
*f1 to xfo, the primal face fi lies before f5. The sign is negative otherwise.

For the cotan Laplacian, the dual graph is obtained by connecting circumcen-
tres of (primal) triangles by straight edges; see Figure 5.1 (left). More generally,
discrete Laplacians derived from orthogonal duals on arbitrary (including non-
planar) triangular surfaces were considered in [30]. These Laplacians always satisfy
(Loc)+(SyM)+(LiN) for the case of planar primal graphs, but fail to satisfy (Pos)
in general. Indeed, for the cotan Laplacian one has (cot cv;; +cot 3;;) > 0 if and only
if (cvij + Bi;) < m. This is the case for all edges (7, j) if and only if the triangulation
is Delaunay. One may restore (P0s) by successive edge flips (thereby changing the
combinatorics) until one arrives at a Delaunay triangulation [6]. Unfortunately, the
number of required edge flips to obtain a Delaunay triangulation from an arbitrary
given triangulation cannot be bounded a priori. Therefore, this approach fails to
satisfy locality in general.
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Figure 5.1 Left: Primal graph (solid lines) and orthogonal circumcentric dual graph (dashed
lines) defining the cotan Laplacian. Middle: Mean value weights correspond to dual edges tangent
to the unit circle around a primal vertex. Right: The projection of the Schénhardt polytope does
not allow for a discrete Laplacian satisfying (Sym)+(Loc)+(LiN)+(Pos).

More generally, so-called weighted Delaunay triangulations turn out to be the
only triangulations that posses positive orthogonal duals and thus admit discrete
Laplacians that satisfy (Loc)+(SyMm)+(LIN)+(Pos). Like Rippa’s theorem (see
above) this fact provides an instance of the intricate connection between properties
of discrete differential operators (the Laplacian) and purely geometric properties
(weighted Delaunay triangulations).

Finally, if one drops the requirement of symmetric edge weights, then one enters
the realm of barycentric coordinates. In this case one may still obtain an orthogonal
dual face per primal vertex, but these dual faces no longer fit into a consistent dual
graph; see Figure 5.1 (middle). Hence, for the case dual edges with positive lengths,
one obtains edge weights satisfying (Loc)+(LIN)+(Pos) but not (Sym). Floater et
al. [28] explored a subspace of this case: a one-parameter family of linear precision
barycentric coordinates, including mean value and Wachspress coordinates. Langer
et al. [38] showed that each member of this family corresponds to a specific choice
of orthogonal dual face per primal vertex.

The fact that no discrete Laplace operator satisfies all of the desired properties
simultaneously is not a coincidence. It can be shown that general simplicial meshes
do not allow for discrete Laplacians that satisfy (Loc)+(SyM)+(LIN)+(Pos);
see [50] for more on this topic and Figure 5.1 (right) for a simple example. This
limitation provides a taxonomy on existing literature and explains the plethora of
existing discrete Laplacians: Since not all desired properties can be fulfilled simul-
taneously, it depends on the application at hand to design discrete Laplacians that
are tailored towards the specific needs of a concrete problem.

Another important desideratum is convergence: In the limit of refinement of
simplicial manifolds that approximate a smooth manifold, one seeks to approxi-
mate the smooth Laplacian by a sequence of discrete ones. For applications this is
important in terms of obtaining discrete operators that are as mesh independent
as possible—re-meshing a given shape should not result in a drastically different
Laplacian.

A closely related concept to convergence is consistency. A sequence of discrete
Laplacians (A, )nen is called consistent, if A,,u — Awu for all appropriately chosen
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functions u. For example, it can be shown that Laplacians on point clouds, such as
those considered in [4] are consistent; see [21].

Convergence is more difficult to show than consistency since it additionally re-
quires that that the solutions u,, to the Poisson problems A,u, = f converge (in
an appropriate norm) to the solution u of Au = f. Discussing convergence in detail
is beyond the scope of this short survey. Roughly speaking, Laplacians on simplicial
manifolds converge to their smooth counterparts (in an appropriate operator norm)
if the inner products on discrete k-forms used for defining simplicial Laplacians con-
verge to the inner products on smooth k-forms. In this case, one obtains convergence
of solutions to the Poisson problem, convergence of the components of the Hodge
decomposition, convergence of eigenvalues and eigenfunctions [22, 24, 33, 49, 52,
and (using different techniques) convergence of Cheeger cuts [7].
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