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What this is about

Elastic rods are curve-like elastic bodies that have one dimension (length) much
larger than the others (cross-section). Their elastic energy breaks down into three
contributions: stretching, bending, and twisting. Stretching and bending are cap-
tured by the deformation of a space curve called the centerline, while twisting
is captured by the rotation of a material frame associated to each point on the
centerline. Building on the notions of framed curves, parallel transport, and ho-
lonomy, we present a smooth and a corresponding discrete theory that establishes
an efficient model for simulating thin flexible rods with arbitrary cross section
and undeformed configuration. To large parts, the material herein is an excerpt
from [1].

Elastic energy

We describe the configuration of a smooth elastic rod by an adapted framed
curve Γ = {γγγ; t,m1,m2}. Here γγγ(s) is an arc length parameterized space curve
describing the rod’s centerline; the assignment of an orthonormal material frame
{t(s),m1(s),m2(s)} to each point on the centerline contains the requisite infor-
mation for measuring twist. We require the material frame to be adapted to the
centerline, i.e., to satisfy t(s) = γγγ′(s). As usual, we refer to κκκ = t′ as the center-
line’s curvature (normal) vector and to τ = m′1 ·m2 as the material frames twist
measuring the rotation of the material around its centerline. The Kirchhoff model
of elastic energy of inextensible (no stretching of the centerline) and isotropic (no
preferred bending direction) elastic rods is given by

E =
1
2

∫
γ

ακκκ2 + βτ2 ds ,(1)

where α and β are constants encoding bending and twisting stiffness, respectively.

Curve-angle representation & the Bishop frame

While (1) completely describes an energy model for inextensible isotropic rods,
there is a more convenient description when turning to simulations—one that
renders the formulation of the material frame more explicit. The requisite tool
is provided by the Bishop (or parallel) frame, an adapted orthonormal frame
{t(s),u(s),v(s)} that has zero twist uniformly, i.e., u′ · v = −v′ · u = 0. The
assignment of an adapted frame to one point on the curve uniquely pins down the
Bishop frame throughout the entire curve. Every smoothly parameterized space
curve with nowhere vanishing derivative carries a Bishop frame—one of several
properties that sets the Bishop frame apart from the Frenet frame (which is not
twist-free).
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Denoting by θ the angle between the Bishop and the material frame in the cross
section orthogonal to the centerline’s tangent, i.e., θ = ∠(u,m1) = ∠(v,m2), one
readily checks that the material frame’s twist satisfies τ = θ′. Therefore, we can
rewrite elastic energy of inextensible isotropic rods as

E =
1
2

∫
γ

ακκκ2 + β(θ′)2 ds .(2)

We refer to this formulation as the curve-angle representation, as it previously
also appeared in [3]. This representation reveals a fascinating analogy between
the potential energy of elastic rods and the kinetic energy of Lagrange spinning
tops. Indeed, by identifying the axis of the top with the direction of the rod’s unit
tangent, t, and furthermore identifying the rod’s arc length with the top’s physical
time, we find that

∫
κκκ2 =

∫
(t′)2 and

∫
τ2 =

∫
(θ′)2 measure the kinetic energy of

the motion of the top’s center of mass and rotation around its axis, respectively.

Holonomy & Fuller’s formula

For a frame to be parallel along a space curve has the following interpretation.
Consider the centerline’s Gauss image, γ̃γγ, traced out on the unit 2-sphere, S2, by
the unit tangent, t. For {u,v} to be parallel (twist-free) along γγγ is then equivalent
for {u,v} to be parallel-transported along γ̃γγ in the usual sense of the Levi-Civita
connection on S2.

Assume γγγ is a closed curve, then γ̃γγ is closed as well. When parallel transporting
{u,v} once around γγγ (or γ̃γγ), the resulting final frame will usually differ from the
initial one by an angle called holonomy, Hol. This angle is related to the so-called
writhe. More precisely, whenever γγγ is a non self-intersecting closed space curve
with (material) frame {m1,m2}, let Lk denote the (unique) linking number of the
two curves {γγγ±(s)} = {γγγ(s)± εm1(s)} for some small enough ε > 0. Then

Lk = Tw +Wr ,(3)

where Tw = (1/2π)
∫
γ
τds is the total twist of the material frame, while writhe

satisfies Wr ≡ Hol/2π modulo 1. Equation (3) is sometimes referred to as the
Cǎlugǎreanu-White-Fuller formula, see, e.g., [2].

Furthermore, the Gauss-Bonnet theorem implies that Hol ≡ A modulo 2π,
where A is the signed area enclosed by γ̃γγ on S2.

Centerline variation

In physical simulations, in order to compute forces, we are required to express
changes of elastic energy due to variations of the position (shape) of the center-
line. The corresponding change of bending energy,

∫
γ
κκκ2ds, is straightforward to

calculate, while computing the change of twisting energy,
∫
γ
τ2ds, is slightly more

involved since it requires the computation of the change of holonomy (or writhe).
If γγγ is a closed curve, then it follows from Gauss-Bonnet that the change in holo-
nomy, δHol, with respect to varying the centerline’s tangent (the position of γ̃γγ on
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S2) by δt is given by

δHol = δA = −
∫
γ

δt · (t× t′) ds and hence δθ′ = δt · (κb) ,(4)

where κb = t × t′ is the centerline’s curvature binormal vector. For closed
cuves, (4) is the infinitesimal version of Fuller’s calculation for the difference
between the writhe of two space curves, see [2]. From (4) we obtain that the
L2-gradient of Hol with respect to variations of positions (not tangents) is (κb)′.

The discrete picture

We represent a discrete rod’s centerline as a piecewise straight polygonal space
curve, and we associate discrete adapted orthonormal frames with edges of this
curve. Along each edge we assume these frames to be constant. For each pair
(ei−1, ei) of consecutive edges, discrete parallel transport from one edge to the next
is given by rotating by the angle ∠(ei−1, ei) about the normal to the plane spanned
by ei−1 and ei. This gives rise to discrete Bishop (parallel) frames. Accordingly,
we obtain a discrete notion of holonomy (or writhe) for closed polygonal curves.

We require elastic energy and hence a discrete notion of curvature and twist.
As in the smooth case, twist is nothing but the change of the angle between the
Bishop and the material frame at each edge of the polygonal curve, γγγ.

Consider once more the Gauss image, γ̃γγ of γγγ, on S2. The vertices of γ̃γγ correspond
to unit tangents, ti, along the edges of γγγ, while the edges of γ̃γγ are arcs of great
circles. As in the smooth case before, Gauss-Bonnet tells us that discrete holonomy
is related to the signed area enclosed by γ̃γγ. To obtain forces, it therefore suffices to
study variations of this area with respect to variations of the vertices of γ̃γγ. To this
end, consider an arc of a great circle of length φi = ∠(ti−1, ti) < π between ti−1

and ti and consider respective variations by δti−1 and δti on S2. Consider further
the area swept out by the geodesics that connect the two varying endpoints. It
follows (for example by considering Jacobi fields) that this area (and therefore
discrete holonomy) satisfies

δHol = δA = −δti−1 + δti
2

· (2 tan
φi
2

bi) with bi =
ti−1 × ti
|ti−1 × ti|

,(5)

which is the discrete analogue of (4). By postulating in the discrete case relation (4)
between the gradient of holonomy and curvature, we may define discrete curvatures
at the vertices of γγγ by κi = 2 tan(φi/2), where φi is the angle between the edges
incident to a particular vertex.

For additional material, including anisotropic rods and simulation results, see [1].
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