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Preface 
 
The behavior of physical systems is typically 
described by a set of continuous equations using tools 
such as geometric mechanics and differential 
geometry to analyze and capture their properties. For 
purposes of computation one must derive discrete (in 
space and time) representations of the underlying 
equations. Researchers in a variety of areas have 
discovered that theories, which are discrete from the 
start, and have key geometric properties built into their 
discrete description can often more readily yield 
robust numerical simulations which are true to the 
underlying continuous systems: they exactly preserve 
invariants of the continuous systems in the discrete 
computational realm. Such theories make up the 
nascent field of discrete differential geometry. 
 
This volume documents the full day course Discrete 
Differential Geometry: An Applied Introduction at 
SIGGRAPH Asia 2008 in Singapore on 12 December 
2008. These notes supplement the lectures given by 
Mathieu Desbrun, Peter Schröder, and Max 
Wardetzky. These notes include contributions by 
Miklos Bergou, Mathieu Desbrun, Sharif Elcott, 
Akash Garg, Eitan Grinspun, David Harmon, Eva 
Kanso, Felix Kälberer, Saurabh Mathur, Ulrich 
Pinkall, Peter Schröder, Adrian Secord, Boris 
Springborn, Ari Stern, John M. Sullivan, Yiying Tong, 
Max Wardetzky, and Denis Zorin, and build on the 
ideas of many others. 
 
 
Changes in the 3rd Edition 
 
In this third offering of the course we have introduced 
and revised several chapters. A considerable effort 
was invested to ensure that chapters 1-3, 4-5, and 7-8 
provide a structured, didactic introduction to discrete 
curvature, plate/shell simulation, and differential 
forms, respectively.  
 
Our topic is advancing at a rapid pace, and these notes 
would not present a complete picture if we did not 
include some of the most recent advances. We have 
therefore decided to include four exact reprints of late-
breaking relevant work. Rather than placing these as 
appendices, we have chosen to situate them by their 
natural relation to the progression of the notes. 

A chapter-by-chapter synopsis 
 
The course notes are organized similarly to the 
lectures. We introduce discrete differential geometry 
in the context of discrete curves and curvature 
(Chapter 1). The overarching themes introduced here, 
convergence and structure preservation, make 
repeated appearances throughout the entire volume. 
We ask the question of which quantities one should 
measure on a discrete object such as a triangle mesh, 
and how one should define such measurements 
(Chapter 2). This exploration yields a host of 
measurements such as length, area, mean curvature, 
etc., and these in turn form the basis for various 
applications described later on. We conclude the 
introduction with a summary of curvature measures 
for discrete surfaces (Chapter 3). 
 
The discussion of immersed surfaces paves the way to 
the development of a physical model for thin, flexible 
surfaces (Chapter 4). The case of nearly inextensible 
surfaces is commonplace and allows for particularly 
fast cloth simulation and Willmore flow (Chapter 5). 
The mathematical modeling and simulation of elastic 
rods (flexible curves with twist) requires not only a 
discrete curvature but also discrete framed curves and 
parallel transport (Chapter 6).  
 
At this point we shift down to explore the low-level 
approach of discrete exterior calculus: after an 
overview of the field (Chapter 7), we lay out the 
simple tools for implementing DEC (Chapter 8). With 
this in place, numerically robust and efficient 
simulations of the Navier-Stokes equations of fluids 
become possible (Chapter 9).  
 
DEC can be used to formulate various differential 
operators, including the so-called cotangent Laplacian. 
While this discrete operator has long been used for 
parameterization based on harmonic functions, it 
reappears in an altogether different manner when one 
considers discrete conformal maps and the conformal 
equivalence of triangle meshes (Chapter 10).  
 
The cotangent Laplacian preserves some (but not all) 
core structures of the smooth Laplace-Beltrami 
operator. Recent results suggest the impossibility of 
simultaneously preserving all the important smooth 
structures (Chapter 11). 
 
Simulations of thin-shells, cloth, and fluids, and 
geometric modeling problems such as fairing and 
parameterization, require robust numerical time 
integration. We conclude with an overview of discrete 
geometric mechanics and variational time integrators 
(Chapter 12). 
 
Eitan Grinspun, Mathieu Desbrun, Peter Schröder 
and Max Wardetzky 
14 Sept 2008 
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Chapter 1:
Introduction to Discrete Differential Geometry:

The Geometry of Plane Curves

Eitan Grinspun
Columbia University

Adrian Secord
New York University

1 Introduction

The nascent field of discrete differential geometry deals with
discrete geometric objects (such as polygons) which act as
analogues to continuous geometric objects (such as curves).
The discrete objects can be measured (length, area) and
can interact with other discrete objects (collision/response).
From a computational standpoint, the discrete objects are
attractive, because they have been designed from the ground
up with data-structures and algorithms in mind. From a
mathematical standpoint, they present a great challenge:
the discrete objects should have properties which are ana-
logues of the properties of continuous objects. One impor-
tant property of curves and surfaces is their curvature, which
plays a significant role in many application areas (see, e.g.,
Chapters 4 and 5). In the continuous domain there are re-
markable theorems dealing with curvature; a key require-
ment for a discrete curve with discrete curvature is that it
satisfies analogous theorems. In this chapter we examine the
curvature of continuous and discrete curves on the plane.

The notes in this chapter draw from a lecture given by
John Sullivan in May 2004 at Oberwolfach, and from the
writings of David Hilbert in his book Geometry and the
Imagination.

2 Geometry of the Plane Curve

Consider a plane curve, in particular a small piece
of curve which does not cross itself (a simple curve).

P

Q

Choose two points, P and Q,
on this curve and connect them
with a straight line: a secant.
Fixing P as the “hinge,” ro-
tate the secant about P so
that Q slides along the curve
toward Q. If the curve is
sufficiently smooth (“tangent-
continuous at P”) then the se-

cant approaches a definite line: the tangent. Of all the
straight lines passing through P , the tangent is the best
approximation to the curve. Consequently we define the di-
rection of the curve at P to be the direction of the tangent,
so that if two curves intersect at a point P their angle of
intersection is given by the angle formed by their tangents
at P . If both curves have identical tangents at P then we
say “the curves are tangent at P .” Returning to our sin-
gle curve, the line perpendicular to the tangent and passing
through P is called the normal to the curve at P . Together
the tangent and normal form the axes of a local rectangular
coordinate system. In addition, the tangent can be thought
of as a local approximation to the curve at P .

A better approximation than the tangent is the circle of
curvature: consider a circle through P and two neighboring
points on the curve, and slide the neighboring points towards

P

Figure 1: The family of tangent circles to the curve at point
P . The circle of curvature is the only one crossing the curve
at P .

P . If the curve is sufficiently smooth (“curvature-continuous
at P”) then the circle thus approaches a definite position
known as the circle of curvature or osculating circle; the
center and radius of the osculating circle are the center of
curvature and radius of curvature associated to point P on
the curve. The inverse of the radius is κ, the curvature of
the curve at P .

If we also consider a sense of traversal along the curve
segment (think of adding an arrowhead at one end of the
segment) then we may measure the signed curvature, iden-
tical in magnitude to the curvature, but negative in sign
whenever the curve is turning clockwise (think of riding a
bicycle along the curve: when we turn to the right, it is
because the center of curvature lies to the right, and the
curvature is negative).

Another way to define the circle of curvature is by con-
sidering the infinite family of circles which are tangent to
the curve at P (see Figure 1). Every point on the normal
to the curve at P serves as the center for one circle in this
family. In a small neighborhood around P the curve divides
the plane into two sides. Every circle (but one!) in our fam-
ily lies entirely in one side or the other. Only the circle of
curvature however spans both sides, crossing the curve at P .
It divides the family of tangent circles into two sets: those
with radius smaller than the radius of curvature lying on one
side, and those with greater radius lying on the other side.
There may exist special points on the curve at which the
circle of curvature does not locally cross the curve, and in
general these are finite and isolated points where the curve
has a (local) axis of symmetry (there are four such points on
an ellipse). However on a circle, or a circular arc, the special
points are infinitely many and not isolated.

That the circle of curvature crosses the curve may be rea-
soned by various arguments. As we traverse the curve past
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Figure 2: The Gauss map assigns to every point on the curve
a corresponding point on the unit circle.

point P , the curvature is typically either increasing or de-
creasing, so that in the local neighborhood of P , so that
the osculating circle in comparison to the curve will have
a higher curvature on one side and lower on the other. An
alternative argument considers our three point construction.
Trace along a circle passing through three consecutive points
on the curve to observe that the circle must pass from side
A to side B on the first point, B to A on the second, and A
to B on the third. Similar reasoning of our two-point con-
struction shows that in general the tangent does not cross
the curve—the isolated exceptions are the points of inflec-
tion, where the radius of curvature is infinite and the circle
of curvature is identical to the tangent.

Informally we say that P , the tangent at P , and the oscu-
lating circle at P have one, two, and three coincident points
in common with the curve, respectively. Each construction
in sequence considers an additional approaching point in the
neighborhood of P and the so-called order of approximation
(0, 1, and 2 respectively) is identical to the number of addi-
tional points.

In 1825 Karl F. Gauss introduced a new tool for thinking
about the shape of curves and surfaces. Begin by fixing a
sense of traversal for the curve, naturally inducing for every
point on the curve a direction for the tangent. By conven-
tion, the normal points a quarter turn counterclockwise from
tangent direction. Gauss’s idea is to draw a unit circle on
the plane of the curve, and for any point on the curve, to
represent the normal by the radius of the circle parallel to
the normal and having the same sense as the normal. To any
point P on the curve, the Gauss map assigns a point Q on
the unit circle, namely the point where the radius meets the
circle (here, radius means the line segment from the center
of the circle to a point on the circumference). Observe that
the normal at P is parallel to the radius of the circle, and the
tangent to the curve at P is parallel to the tangent to the cir-
cle at Q. That the tangent at P and Q are parallel is used to
simplify important definitions in differential geometry (see,
e.g., the definition of the shape operator in the chapter on
discrete shells). While the Gauss map assigns exactly one
point on the unit circle to any point on the curve, there may
be multiple points on the curve that map to the same point
on the circle, i.e.the map is not one-to-one.

Consider the image of the curve under the Gauss map:
the Gaussian image of a curve is the union of all points
on the unit circle corresponding to all points on the given
curve. For an open curve, the Gaussian image may be an
arc or may be the unit circle. Consider a closed simple plane

+1 -1 +2 0

Figure 3: Turning numbers of various closed curves. Top
row: Two simple curves with opposite sense of traversal,
and two self-intersecting curves, one of which “undoes” the
turn. Bottom row: Gaussian image of the curves, and the
associated turning numbers.

curve: the image is always the unit circle. If we allow the
closed curve to intersect itself, we can count how many times
the image completely “wraps around” the unit circle (and in
which sense): this is the turning number or the index of
rotation, denoted k. It is unity for a simple closed curve
traversed counterclockwise. It is zero or ±2 for curve that
self-intersects once, depending on the sense of traversal and
on whether or not the winding is “undone.”

Turning Number Theorem. An old and well-known
fact about curves is that the integral of signed curvature over
a closed curve, Ω, is dependent only on the turning number:

Ω

κ ds = 2πk .

No matter how much we wiggle and bend the curve, if we
do not change its turning number we do not change its to-
tal signed curvature1. To change the total signed curvature
of Ω we are forced to alter its turning number by adjusting
the curve to introduce (or rearrange) self-intersecting loops.
This theorem about the significance of the turning number
is a piece of mathematical structure: together all the struc-
ture we discover embodies our understanding of differential
geometry. Consequently, our computational algorithms will
take advantage of this structure. In computing with dis-
crete approximations of continuous geometry, we will strive
to keep key pieces of structure intact.

3 Geometry of the Discrete Plane Curve

Given a curve, r, approximate it drawing an in-
scribed polygon p: a finite sequence of (point)
vertices, V1, V2, . . . Vn,
ordered by a traversal
of the curve, and line
segments connecting
successive vertices2.

1Beware that in the context of space curves, the phrase “total
curvature” is occasionally used to denote the Pythagorean sum
of torsion and curvature—a pointwise quantity like curvature. In
contrast, here we mean the integral of curvature over the curve.

2While we concern ourselves here only with plane curves, this
treatment may be extended to curves in a higher-dimensional am-
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The length of the inscribed polygon is given by

len(p) =
n

i=0

d(Vi, Vi+1) ,

where d(·, ·) measures the euclidean distance3 between two
points. We find the length of the continuous curve by taking
the supremum over all possible inscriptions:

len(r) = sup
p inscribed in r

len(p) .

Next, choose a sense of traversal along the curve, naturally
inducing a sense for the inscribed polygon. The (discrete)
total signed curvature of the inscribed polygon is given by

tsc(p) =
n

i=0

αi ,

where αi is the signed turning angle at vertex Vi, measured
in the sense that a clockwise turn has negative sign; if p
is open then α0 = αn = 0. (N.B.: the turning angle is a
local quantity at each vertex, whereas the turning number
is a global quantity of a curve—these are two distinct con-
cepts). Again, we may express the total signed curvature
of the continuous curve by taking the supremum over all
possible inscribed polygons:

tsc(r) = sup
p inscribed in r

tsc(p) .

A definition based on suprema serves as an elegant foun-
dation for defining the (integral quantities) length and total
curvature of a smooth curve using only very simple polyg-
onal geometry; however suprema are typically is not well
suited for computation. For an equivalent, computationally
meaningful definition, we construct an infinite sequence of
inscribed polygons, p1, p2, p3, . . ., that approaches the po-
sition of r; analogous definitions of len(r) and tsc(r) are
formulated as limits of measurements over elements of the
sequence.

To clarify what we mean by “the inscribed polygon p ap-
proaches the position of r,” define the geometric mesh size
of p by the length of its longest line segment:

h(p) = max
0≤i<n

d(Vi, Vi+1) .

Suppose that r is a smooth simple curve. By smooth we
mean that every point on the curve has a unique well-
defined tangent4. Then one can show that given a sequence
p1, p2, p3, . . . such that h(pi) vanishes in the limit of the se-
quence, then len(pi) approaches len(r). An analogous state-
ment holds for total curvature, as summarized by the follow-
ing statement:5

bient space, Mm ⊆ Rd, by replacing line segments with shortest
geodesics in this definition, and straight-line distance by length
of geodesic in subsequent definitions.

3It measures distance using the metric of the ambient space,
in our case R2.

4Observe that smoothness here is in a purely geometric sense—
the notion of parametric smoothness in the context of parameter-
ized curves is a different matter altogether.

5Note that there are sequences of pathological polygons whose
mesh size vanishes yet the limit of the sequence does not approach
the curve. For example, if the curve is a circle, consider a poly-
gon whose vertices all cluster about a single point of the circle.

Figure 4: The discrete Gauss map assigns to every edge of
the polygon a corresponding point on the unit circle, and to
every vertex of the polygon a corresponding arc on the unit
circle.

Convergence. A key recurring theme in discrete differ-
ential geometry is the convergence of a measurement taken
over a sequence of discrete objects each better approximat-
ing a particular smooth object. In the case of a plane curve,
a sequence of inscribed polygons, each closer in position to
the curve, generates a sequence of measurements that ap-
proach that of the curve:

len(r) = lim
h(pi)→0

len(pi) ,

tsc(r) = lim
h(pi)→0

tsc(pi) .

Establishing convergence is a key step towards numerical
computations which use discrete objects as approximations
to continuous counterparts. Indeed, one might argue that
the notion of continuous counterpart is only meaningful in
the context of established convergence. Put simply, if we
choose an inscribed polygon as our discrete analogue of a
curve, then as the position of the approximating polygon
approaches the curve, the measurements taken on the ap-
proximant should approach those of the underlying curve.

Next, consider the tangents, normals, and Gaussian im-
age of a closed polygon p. Repeating the two-point limiting
process we used to define the tangent for a point on the
curve, we observe that every vertex of the polygon has two
limiting tangents (thus two normals), depending on the di-
rection from which the limit is taken (see Figure 4). De-
fine the Gaussian image of p by assigning to every vertex
Vi the arc on the unit circle whose endpoints are the two
limiting normals and whose signed angle equals the signed
turning angle αi, i.e., as if one “smoothly interpolated” the
two normals in the Gaussian image. Every point on the
polygon away from the vertices has a unique normal which
corresponds in the Gaussian image to the meeting point of
consecutive arcs. The sense of traversal along the polygon
induces a natural sense of traversal along the arcs of the
Gaussian image. With this construction in place, our def-
inition of turning number for a smooth plane curve carries
over naturally to the setting of closed polygons. Not that
for for open polygons, the Gaussian image of vertices at the
endpoints is a point on the unit circle (a degenerate arc).

As long as the length of the longest line segment shrinks, i.e.
the polygon clusters more tightly around the point, then this se-
quence of polygons will satisfy our definition but will clearly not
converge to a circle. One may introduce stronger requirements on
the polygon sequence to exclude such pathological sequences.
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Structure preservation. Does the Turning Number
Theorem hold for discrete curves? Yes. Recall that the
sum of exterior angles of a simple closed polygon is 2π. This
observation may be generalized to show that tsc(p) = 2πk
where k is the turning number of the polygon. We stress a
key point: the Turning Number Theorem is not a claim that
the total signed curvature converges to a multiple of 2π in
the limit of a finely refined inscribed polygon. The Turning
Number Theorem is preserved exactly and it holds for any
(arbitrarily coarse) closed polygon. Note, however, that the
turning number of an inscribed polygon may not match that
of the smooth curve, at least until sufficiently many vertices
are added (in the right places) to capture the topology of
the curve.

4 Parameterization of the Plane Curve

So far in our exploration of curves our arguments have
never explicitly made reference to a system of coordinates.
This was to stress the point that the geometry (or shape)
of the curve can be described without reference to coor-
dinates. Nevertheless, the idea of parameterizing a curve
occurs throughout applied mathematics. Unfortunately, pa-
rameterization can sometimes obscure geometric insight. At
the same time, it is an exceedingly useful computational tool,
and as such we complete our exploration of curves with this
topic.

In working with curves it is useful to be able to indicate
particular points and their neighborhoods on the curve. To
that end we parameterize a curve over a real interval map-
ping each parameter point, t ∈ [0, a], to a point R(t) on the
plane:

R : [0, a] → R2 .

Thus the endpoints of finite open curve are R(0) and R(a);
for closed curves we require R(0) = R(a).

The parameterization of a curve is not unique. Besides the
geometric information encoded in the image of R, the para-
meterization also encodes a parameterization-dependent ve-
locity. To visualize this, observe that moving the parameter
at unit velocity slides a point R(t) along the curve: the rate
of change of R(t), or velocity, is the vector $v(t) = d

dtR(t).
Indeed, given any strictly increasing function t(s) : [0, b] →
[0, a] we reparameterize the curve as R(t(s)) so that moving
along s ∈ [0, b] generates the same points along the curve; the
geometry remains the same, but by chain rule of the calculus
the velocity is now $v(s) = d

dsR(t(s)) = d
dtR(t(s)) d

ds t(s): at
every point the R(t(s)) reparameterization scales the veloc-
ity by d

ds t(s).
Given a parameterized curve there is a unique reparame-

terization, R̂(s) = R(t(s)), with the property that ‖$v(s)‖ =
1, s ∈ [0, b]. In arc-length parameterization of a curve, unit
motion along the parameter s corresponds to unit motion
along the length of the curve. Consequently, s is the length
traveled along the curve walking from R̂(0) to R̂(s), there-
fore b is the length of the entire curve.

In the special setting of an arc-length parameterization
the curvature at a point R(s) is identical to the second deriv-

ative d2

ds2 R(s). It is a grave error to identify curvatures with
second derivatives in general. The former is a geometric
quantity only, and we defined it without reference to a para-
meterization; the latter encodes both geometry and velocity,
and is parameterization-dependent. Here a spaceship anal-
ogy is helpful. If a spaceship travels at unit speed along a
curved path, the curvature give the acceleration of the space-
ship. Now if the spaceship travels at a nonuniform velocity

along the path, then part of the acceleration is due to cur-
vature, and part is due to speeding up and slowing down.
A parameterization encodes velocity—this can be extremely
useful for some applications.

Parameterization enables us to reformulate our statement
of convergence. Given a sequence of parameter values, 0 =
t1 ≤ t2 . . . ≤ tn−1 ≤ tn = b, for a “sufficiently well-behaved”
parameterization of a “sufficiently well-behaved” curve6, we
may form an inscribed polygon taking Vi = R(ti). Then the
parametric mesh size of the inscribed polygon is the greatest
of all parameter intervals [ti, ti + 1]:

hR(p) = max
i

(ti+1 − ti) .

Unlike geometric mesh size, parametric mesh size is depen-
dent on the chosen parameterization.

As before, consider a sequence of inscribed polygons, each
sampling the curve at more parameter points, and in the
limit sampling the curve at all parameter points: the as-
sociated sequences of discrete measurements approach their
continuous analogs:

len(r) = lim
hR(pi)→0

len(pi) ,

tsc(r) = lim
hR(pi)→0

tsc(pi) .

5 Conclusion and Overview

So far we have looked at the geometry of a plane curve and
demonstrated that it is possible to define its discrete ana-
logue. The formulas for length and curvature of a discrete
curve (a polygon) are immediately amenable to computa-
tion. Convergence guarantees that in the presence of abun-
dant computational resources we may refine our discrete
curve until the measurements we take match to arbitrary
precision their counterparts on a smooth curve. We dis-
cussed an example of structure preservation, namely that the
Turning Number Theorem holds exactly for discrete curves,
even for coarse mesh sizes. If we wrote an algorithm whose
correctness relied on the Turning Number Theorem, then
the algorithm could be applied to our discrete curve.

The following chapters will extend our exploration of dis-
crete analogues of the objects of differential geometry to the
settings of surfaces and volumes and to application areas
spanning physical simulation (thin shells and fluids) and
geometric modeling (remeshing and parameterization). In
each application area algorithms make use of mathemat-
ical structures that are carried over from the continuous
to the discrete realm. We are not interested in preserv-
ing structure just for mathematical elegance—each applica-
tion demonstrates that by carrying over the right structures
from the continuous to the discrete setting, the resulting
algorithms exhibit impressive computational and numerical
performance.

6Indeed, the following theorems depend on the parameteriza-
tion being Lipschitz, meaning that small changes in parameter
value lead to small motions along the curve:

d(R(a), R(b)) ≤ C|a− b| ,

for some constant C. The existence of a Lipschitz parameteriza-
tion is equivalent to the curve being rectifiable, or having finite
arclength. Further care must be taken in allowing non-continuous
curves with finitely many isolated jump points.
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Chapter 2:
What Can We Measure?

Peter Schröder
Caltech

1 Introduction
When characterizing a shape or changes in shape we must first
ask, what can we measure about a shape? For example, for
a region in R3 we may ask for its volume or its surface area.
If the object at hand undergoes deformation due to forces act-
ing on it we may need to formulate the laws governing the
change in shape in terms of measurable quantities and their
change over time. Usually such measurable quantities for a
shape are defined with the help of integral calculus and often
require some amount of smoothness on the object to be well
defined. In this chapter we will take a more abstract approach
to the question of measurable quantities which will allow us
to define notions such as mean curvature integrals and the cur-
vature tensor for piecewise linear meshes without having to
worry about the meaning of second derivatives in settings in
which they do not exist. In fact in this chapter we will give
an account of a classical result due to Hadwiger, which shows
that for a convex, compact set in Rn there are only n + 1
unique measurements if we require that the measurements be
invariant under Euclidian motions (and satisfy certain “sanity”
conditions). We will see how these measurements are con-
structed in a very straightforward and elementary manner and
that they can be read off from a characteristic polynomial due
to Steiner. This polynomial describes the volume of a family
of shapes which arise when we “grow” a given shape. As a
practical tool arising from these consideration we will see that
there is a well defined notion of the curvature tensor for piece-
wise linear meshes and we will see very simple formulas for
quantities needed in physical simulation with piecewise linear
meshes. Much of the treatment here will initially be limited to
convex bodies to keep things simple. This limitation that will
be removed at the very end.

The treatment in this chapter draws heavily upon work
by Gian-Carlo Rota and Daniel Klein, Hadwigers pioneering
work, and some recent work by David Cohen-Steiner and col-
leagues.

2 Geometric Measures
To begin with let us define what we mean by a measure. A
measure is a function µ defined on a family of subsets of some
set S, and it takes on real values: µ : L → R. Here L denotes
this family of subsets and we require of L that it is closed
under finite set union and intersection as well as that it contains
the empty set, ∅ ∈ L. The measure µ must satisfy two axioms:
(1) µ(∅) = 0; and (2) µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩
B) whenever A and B are measureable. The first axiom is
required to get anything that has a hope of being well defined.
If µ(∅) was not equal to zero the measure of some set µ(A) =
µ(A ∪ ∅) = µ(A) + µ(∅) could not be defined. The second
axiom captures the idea that the measure of the union of two
sets should be the sum of the measures minus the measure of

their overlap. For example, consider the volume of the union
of two sets which clearly has this property. It will also turn that
the additivity property is the key to reducing measurements
for complicated sets to measurements on simple sets. We will
furthermore require that all measures we consider be invariant
under Euclidian motions, i.e., translations and rotations. This
is so that our measurements do not depend on where we place
the coordinate origin and how we orient the coordinate axes.
A measure which depended on these wouldn’t be very useful.

Let’s see some examples. A well known example of such a
measure is the volume of bodies in R3. Clearly the volume of
the empty body is zero and the volume satisfies the additivity
axiom. The volume also does not depend on where the coordi-
nate origin is placed and how the coordinate frame is rotated.
To uniquely tie down the volume there is one final ambiguity
due to the units of measurement being used, which we must
remove. To this end we enforce a normalization which states
that the volume of the unit, coordinate axis aligned parallelip-
iped in Rn be one. With this we get

µn
n(x1, . . . , xn) = x1 · . . . · xn

for x1 to xn the side lengths of a given axis aligned paral-
lelipiped. The superscript n denotes this as a measure on Rn,
while the subscript denotes the type of measurement being
taken. Clearly the definition of µn

n is translation invariant. It
also does not depend on how we number our coordinate axes,
i.e., it is invariant under permutations of the coordinate axes.
Finally if we rotate the global coordinate frame none of the
side lengths of our parallelipiped change so neither does µn

n.
Notice that we have only defined the meaning of µn

n for axis
aligned parallelipipeds as well as finite unions and intersec-
tions of such parallelipipeds. The definition can be extended
to more general bodies through a limiting process akin to how
Riemann integration fills the domain with ever smaller boxes
to approach the entire domain in the limit. There is nothing
here that prevents us from performing the same limit process.
In fact we will see later that once we add this final require-
ment, that the measure is continuous in the limit, the class of
such measures is completely tied down. This is Hadwiger’s
famous theorem. But, more on that later.

Of course the next question is, are there other such invariant
measures? Here is a proposal:

µn
n−1(x1, . . . , xn) =

x1x2 + x1x3 + . . . + x1xn + x2x3 + . . . + x2xn . . .

For an axis aligned parallelipiped in R3 we’d get

µ3
2(x1, x2, x3) = x1x2 + x2x3 + x3x1

which is just half the surface area of the paralellipiped with
sides x1, x2, and x3. Since we have the additivity property
we can certainly extend this definition to more general bodies
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through a limiting process and find that we get, up to normal-
ization, the surface area.

Continuing in this fashion we are next led to consider

µ3
1(x1, x2, x3) = x1 + x2 + x3

(and similarly for µn
1 ). For a parallelipiped this function mea-

sures one quarter the sum of lengths of its bounding edges.
Once again this new measure is clearly rigid motion invariant.
What we need to check is whether it satisfies the additivity
theorem. Indeed it does, which is easily checked for the union
of two paralellipipeds. What is less clear is what this mea-
sure represents if we extend it to more general shapes where
the notion of “sum of edge lengths” is not clear. The result-
ing continuous measure is sometimes referred to as the mean
width.

From these simple examples we can see a pattern. For
Euclidian n-space we can use the elementary symmetric poly-
nomials in edge lengths to define n invariant measures

µn
k (x1, . . . , xn) =

1≤i1<i2<...<ik≤n

xi1xi2 . . . xik

for k = 1, . . . , n for parallelipipeds. To extend this defini-
tion to more general bodies we’ll follow ideas from geometric
probability. In particular we will extend these measures to the
ring of compact convex bodies, i.e., finite unions and intersec-
tions of compact convex sets in Rn.

3 How Many Points, Lines, Planes,...
Hit a Body?

Consider a compact convex set, a convex body, in Rn and sur-
round it by a box. One way to measure its volume is to count
the number of points which, when randomly thrown into the
box, hit the body versus those that hit empty space inside the
box. To generalize this idea we consider affine subspaces of
dimension k < n in Rn. Recall that an affine subspace of
dimension k is spanned by k + 1 points pi ∈ Rn (in gen-
eral position), i.e., the space consists of all points q which can
be written as affine combinations q = i αipi, i αi = 1.
Such an affine subspace is simply a linear subspace translated,
i.e., it does not necessarily go through the origin. For example,
for k = 1, n = 3 we will consider all lines—a line being the
set of points one can generate as affine combinations of two
points on the line—in three space. Let λ3

1(R) be the measure
of all lines going through a rectangle in R3. Then

λ3
1(R) = cµ3

2(R),

i.e., the measure of all lines which meet the rectangle is pro-
portional to the area of the rectangle. To see this, note that a
given line (in general position) either meets the rectangle once
or not at all. Conversely for a given point in the rectangle there
is a whole set of lines—a sphere’s worth—which “pierce” the
rectangle in the given point. The measure of those lines is pro-
portional to the area of the unit sphere. Since this is true for all
points in the rectangle we see that the total measure of all such
lines must be proportional to the area of the rectangle with a
constant of proportionality depending on the measure of the
sphere. For now such constants are irrelevant for our consider-
ations so we will just set it to unity. Given a more complicated
shape C in a plane nothing prevents from performaing a lim-
iting process and we see that the measure of lines meeting C

is
λ3

1(C) = µ3
2(C),

i.e., it is proportional to the area of the region C. Given a union
of rectangles D = ∪iRi, each living in a different plane, we
get

XD(ω) dλ3
1(ω) =

i

µ3
2(Ri).

Here XD(ω) counts the number of times a line ω meets the set
D and the integration is performed over all lines. Going to the
limit we find for some convex body E a measure proportional
to its surface area

XE(ω) dλ3
1(ω) = µ3

2(E).

Using planes (k = 2) we can now generalize the mean
width. For a straight line c ∈ R3 we find λ3

2(c) = µ3
1(c) =

l(c), i.e., the measure of all planes that meet the straight line is
proportional—as before we set the constant of proportionality
to unity—to the length of the line. The argument mimics what
we said above: a plane either meets the line once or not at all.
For a given point on the line there is once again a whole set
of planes going through that point. Considering the normals
to such planes we see that this set of planes is proportional in
measure to the unit sphere without being more precise about
the actual constant of proportionality. Once again this can be
generalized with a limiting process giving us the measure of
all planes hitting an arbitrary curve in space as proportional to
its length

XF (ω) dλ3
2(ω) = µ3

1(F ).

Here the integration is performed over all planes ω ∈ R3,
and XF counts the number of times a given plane touches the
curve F .

It is easy to see that this way of measuring recovers the
perimeter of a parallelipiped as we had defined it before

λ3
2(P ) = µ3

1(P ).

To see this consider the integration over all planes but taken
in groups. With the parallelipiped having one corner at
the origin—and being axis aligned—first consider all planes
whose normal (nx, ny, nz) has either all non-negative or non-
positive entries (i.e., the normal, or its negative, points into the
first octant). Any such plane, if it meets the parallelipiped,
meets it in a point along either x1, x2 or x3 giving us the de-
sired µ3

1(P ) = x1 +x2 +x3 as the measure of all such planes.
The same argument holds for the remaining seven octants giv-
ing us the desired result up to a constant. We can now see that
µ3

1(E) for some convex body E can be written as

XE(ω) dλ3
2(ω) = µ3

1(E),

i.e., the measure of all planes which meet E. With this we
have generalized the notion of perimeter to more general sets.

All this can be summarized as follows. Let µ be a measure
which is Euclidean motion invariant. Then it can be written,
up to normalization, as a linear combination of the measures
µn

k (C) of all affine subspaces of dimension n − k meeting
C ⊂ Rn for k = 1, . . . , n. These measures are called the
intrinsic volumes.
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Are these all such measures? It turns out there is one mea-
sure missing, which corresponds to the elementary symmetric
function of order zero

µ0(x1, . . . , xn) =
1 n > 0
0 n = 0

This very special measure is the Euler characteristic of a con-
vex body. It takes the value 1 on all non-empty convex bodies.
The main trick is to prove that µ0 is indeed well defined. This
can be done by inducation. In dimension n = 1 we consider
closed intervals [a, b], a < b. Instead of working with the set
directly we consider a functional on the characteristic function
f[a,b] of the set which does the trick

χ1(f) =
R

f(ω)− f(ω+) dω.

Here f(ω+) denotes the right limiting value of f at ω:
limε→0 f(ω + ε), ε > 0. For the set [a, b], f(ω) − f(ω+)
is zero for all ω ∈ R except b since f(b) = 1 and f(b+) = 0.
For higher dimensions we proceed by induction. In Rn take a
straight line L and consider the affine subspaces Aω of dimen-
sion n− 1 which are orthogonal to L and parameterized by ω
along L. Letting f be the characteristic function of a convex
body in Rn we get

χn(f) =
R

χn−1(fω)− χn−1(fω+) dω.

Here fω is the restriction of f to the affine space Aω or al-
ternatively the characteristic function of the intersection of
Aω and the convex body of interest. With this we define
µn

0 (G) = χn(f) for any finite union of convex bodies G and
f the characteristic function of the set G ∈ Rn.

That this definition of µn
0 amounts to the Euler characteris-

tic is not immediately clear, but it is easy to show, if we con-
vince ourselves that for any non empty convex body C ∈ Rn

µn
0 (Int(C)) = (−1)n.

For n = 1, i.e., the case of open intervals on the real line, this
statement is obviously correct. We can now apply the recursive
definition to the characteristic function of the interior of C and
get

µn
0 (Int(C)) =

ω

χn−1(fω)− χn−1(fω+) dω.

By induction the right hand side is zero except for the first ω at
which Aω ∩ C is non-empty. There χn−1(fω+) = (−1)n−1,
thus proving our assertion for all n.

The Euler-Poincaré formula for a polyhedron

|F |− |E|− |V | = 2(1− g)

which relates the number of faces, edges, and vertices to the
genus now follows easily. Given a polyhedron simply write
it as the non-overlapping union of the interiors of all its cells
from dimension n down to dimension 0, where the interior of
a vertex (0-cell) is the vertex itself. Then

µn
0 (P ) =

c∈P

µn
0 (Int(c)) = c0 − c1 + c2 − . . .

where ci equals the number of cells of dimension i. For the
case of a polyhedron in R3 this is exactly the Euler-Poincaré
formula.

4 The Intrinsic Volumes and Had-
wiger’s Theorem

The above machinery can now be used to define the intrinsic
volumes as functions of the Euler characteristic alone for all
finite unions of convex bodies G

µn
k (G) = µn

0 (G ∩ ω) dλn
n−k(ω).

Here µn
0 (G ∩ ω) plays the role of XG(ω) we used earlier to

count the number of times ω hits G.
There is one final ingredient missing, continuity in the limit.

Suppose Cn is a sequence of convex bodies which converges
to C in the limit as n →∞. Hadwiger’s theorem says that if a
Euclidean motion invariant measure µ of convex bodies in Rn

is continuous in the sense that

lim
Cn→C

µ(Cn) = µ(C)

then µ must be a linear combination of the intrinsic volumes
µn

k , k = 0, . . . , n. In other words, the intrinsic volumes, under
the additional assumption of continuity, are the only linearly
independent, Euclidean motion invariant, additivie measures
on finite unions and intersections of convex bodies in Rn.

What does all of this have to do with the applications we
have in mind? A consequence of Hadwiger’s theorem assures
us that if we want to take measurements of piecewise linear
geometry (surface or volume meshes, for example) such mea-
surements should be functions of the intrinsic volumes. This
assumes of course that we are looking for additive measure-
ments which are Euclidean motion invariant and continuous in
the limit. For a triangle for example this would be area, edge
length, and Euler characteristic. Similarly for a tetrahedron
with its volume, surface area, mean width, and Euler charac-
teristic. As the name suggests all of these measurements are
intrinsic. For a 2-manifold mesh which is the boundary of a
solid one of these measurements is an extrinsic quantity cor-
responding to the dihedral angle between triangles meeting at
an edge (see below).

5 Steiner’s Formula
We return now to questions of discrete differential geometry
by showing that the intrinsic volumes are intricately linked
to curvature integrals and represent their generalization to
the non-smooth setting. This connection is established by
Steiner’s formula.

Consider a non-empty convex body K ∈ Rn together with
its parallel bodies

Kε = {x ∈ Rn : d(x, K) ≤ ε}

where d(x, K) denotes the Euclidean distance from x to the
set K. In effect Kε is the body K thickened by ε. Steiner’s
formula gives the volume of Kε as a polynomial in ε

V (Kε) =
n

j=0

V (Bn−j)Vj(K)εn−j .

Here the Vj(K) are the measures µn
k we have seen earlier.

For this formula to be correct the Vj(K) are normalized so
that they compute the j-dimensional volume when restricted
to a j-dimensional subspace of Rn. V (Bn−j) = πn/2/Γ(1 +
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1/2n) denotes the (n− j)-volume of the (n− j)-unit ball. In
particular we have V (B0) = 1, V (B1) = 2, V (B2) = π, and
V (B3) = 4π/3.

In the case of a polyhedron we can verify Steiner’s formula
“by hand.” Consider a tetrahedron in T ∈ R3 and the volume
of its parallel bodies Tε. For ε = 0 we have the volume of T
itself (V3(T )). The first order term in ε, 2V2(T ), is controlled
by area measures: above each triangle a displacement along
the normal creates additional volume proportional to ε and the
area of the triangle. The second order term in ε, πV1(T ), cor-
responds to edge lengths. Above each edge the parallel bodies
form a wedge with opening angle θ which is the exterior an-
gle of the faces meeting at that edge and radius ε (this is the
extrinsic measurement alluded to above). The volume of such
as wedge is proportional to edge length, exterior angle, and ε2.
Finally the third order term in ε, 4π/3V0(T ), corresponds to
the volume of the parallel bodies formed over vertices. Each
vertex gives rise to additional volume spanned by the vertex
and a spherical cap above it. The spherical cap corresponds to
a spherical triangle formed by the three incident triangle nor-
mals. The volume of such a spherical wedge is proportional to
its solid angle and ε3.

If we have a convex body with a boundary which is C2 we
can give a different representation of Steiner’s formula. Con-
sider such a convex M ∈ Rn and define the offset function

g(p) = p + t(n(p)

for 0 ≤ t ≤ ε, p ∈ ∂M and (n(p) the outward normal to M in
p. We can now directly compute the volume of Mε as the sum
of Vn(M) and the volume between the surfaces ∂M and ∂Mε.
The latter can be written as an integral of the determinant of
the Jacobian of g

∂M

ε

0

∂g(p)
∂p

dt dp.

Since we have a choice of coordinate frame in which to do this
integration we may assume wlog that we use principal curva-
ture coordinates on ∂M , i.e., a set of orthogonal directions in
which the curvature tensor diagonalises. In that case

∂g(p)
∂p

= |I + tK(p)|

=
n−1

i=1

(1 + κi(p)t)

=
n−1

i=0

µn−1
i (κ1(p), . . . , κn−1(p))ti.

In other words, the determinant of the Jacobian is a polynomial
in t whose coefficients are the elementary symmetric functions
in the principal curvatures. With this subsitution we can triv-
ially integrate over the variable t and get

V (Mε) = Vn(M)+
n−1

i=0

εi+1

i + 1 ∂M

µn−1
i (κ1(p), . . . , κn−1(p)) dp.

Comparing the two versions of Steiner’s formula we see that
the intrinsic volumes generalize curvature integrals. For ex-
ample, for n = 3 and some arbitrary convex body K we get

V (Kε) = 1V3(K) + 2V2(K)ε + πV1(K)ε2 +
4π
3

V0(K)ε3

while for a convex body M with C2 smooth boundary the for-
mula reads as

V (Mε) = V3(M) +

∂M

µ2
0(κ1(p), κ2(p))

=1

dp

=A

ε +

∂M

µ2
1(κ1(p), κ2(p))

=2H

dp
ε2

2
+

∂M

µ2
2(κ1(p), κ2(p))

=K

dp

=4π

ε2

3
.

6 What All This Machinery Tells Us

We began this section by considering the question of what ad-
ditive, continuous, rigid motion invariant measurements there
are for convex bodies in Rn and learned that the n + 1 intrin-
sic volumes are the only ones and any such measure must be
a linear combination of these. We have also seen that the in-
trinsic volumes in a natural way extend the idea of curvature
integrals over the boundary of a smooth body to general con-
vex bodies without regard to a differentiable structure. These
considerations become one possible basis on which to claim
that integrals of Gaussian curvature on a triangle mesh be-
come sums over excess angle at vertices and that integrals of
mean curvature can be identified with sums over edges of di-
hedral angle weighted by edge length. These quantities are al-
ways integrals. Consequently they do not make sense as point-
wise quantities. In the case of smooth geometry we can define
quantities such as mean and Gaussian curvature as pointwise
quantities. On a simplicial mesh they are only defined as inte-
gral quantities.

All this machinery was developed for convex bodies. If a
given mesh is not convex the additivity property allows us to
compute the quantities no less by writing the mesh as a finite
union and intersection of convex bodies and then tracking the
corresponding sums and differences of measures. For exam-
ple, V (Kε) is well defined for an individual triangle K and
we know how to identify the coefficients involving intrinsic
volumes with the integrals of elementary polynomials in the
principal curvatures. Glueing two triangles together we can
perform a similar identification carefully teasing apart the in-
trinsic volumes of the union of the two triangles. In this way
the convexity requirement is relaxed so long as the shape of
interest can be decomposed into a finite union of convex bod-
ies.

This machinery was used by Cohen-Steiner and Morvan to
give formulas for integrals of a discrete curvature tensor. We
give these here together with some fairly straightforward intu-
ition regarding the underlying geometry.

Let P be a polyhedron with vertex set V and edge set E
and B a ball in R3 then we can define integrated Gaussian and
mean curvature measures as

φG
P (B) =

v∈V ∩B

Kv and φH
P (B) =

e∈E

l(e ∩B)θe,
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where Kv = 2π − j αj is the excess angle sum at vertex
v defined through all the incident triangle angles at v, while
l(.) denotes the length and θe is the signed dihedral angle at e
made between the incident triangle normals. Its sign is positive
for convex edges and negative for concave edges (note that
this requires an orientation on the polyhedron). In essence this
is simply a restatement of the Steiner polynomial coefficients
restricted to the intersection of the ball B and the polyhedron
P . To talk about the second fundamental form IIp at some
point p in the surface, it is convenient to first extend it to all of
R3. This is done by setting it to zero if one of its arguments is
parallel to the normal p. With this one may define

ĪIP (B) =
e∈E

l(e ∩B)θeen ⊗ en, en = e/‖e‖.

The dyad en ⊗ en(u, v) = 〈u, en〉〈v, en〉 projects given vec-
tors u and v along the normalized edge. What is the geometric
interpretation of the summands? Consider a single edge and
the associated dyad. The curvature along this edge is zero
while it is θ orthogonal to the edge. A vector aligned with
the edge is mapped to θe while one orthogonal to the edge is
mapped to zero. These are the principal curvatures except they
are reversed. Hence ĪIP (B) is an integral measure of the cur-
vature tensor with the principal curvature values exchanged.
For example we can assign each vertex a three by three tensor
by summing the edge terms for each incident edge. As a tan-
gent plane at the vertex, which we need to project the three by
three tensor to the expected two by two tensor in the tangent
plane, we may take a vector parallel to the area gradient at the
vertex. Alternatively we could defined ĪIP (B) for balls con-
taining a single triangle and its three edges each. In that case
the natural choice for the tangent plane is the support plane of
the triangle. In practice one often finds that noise in the mesh
vertex positions makes these discrete computations noisy. It is
then a simple matter of enlarging B to stabilize the computa-
tions.

Cohen-Steiner and Morvan show that this definition can
be rigorously derived from considering the coefficients of
the Steiner polynomial in particular in the presence of non-
convexities (which requires some fancy footwork...). They
also show that if the polyhedron is a sufficiently fine sample
of a smooth surface the discrete curvature tensor integrals have
linear precision with regards to continuous curvature tensor in-
tegrals. They also provide a formula for a discrete curvature
tensor which does not have the principal curvatures swapped.

7 Further Reading
The material in this section only gives the rough outlines of
what is a very fundamental theory in probability and geomet-
ric measure theory. In particular there are many other con-
sequences which follow from relationships between intrin-
sic volumes which we have not touched upon. A rigorous
derivation of the results of Hadwiger, but much shorter than
the original can be found in [Klain 1995]. A complete and
rigorous account of the derivation of intrinsic volumes from
first principles in geometric probability can be found in the
short book by Klain and Rota [Klain and Rota 1997], while
the details of the discrete curvature tensor integrals can be
found in [Cohen-Steiner and Morvan 2003]. Approximation
results which discuss the accuracy of these measure vis-a-vis
an underlying smooth surface are treated by Cohen-Steiner
and Morvan in a series of tech reports available at http://www-
sop.inria.fr/geometrica/publications/.
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The curvatures of a smooth curve or surface are local mea-
sures of its shape. Here we consider analogous measures
for discrete curves and surfaces, meaning polygonal curves
and triangulated polyhedral surfaces. We find that the most
useful analogs are those which preserve integral relations for
curvature, like the Gauß–Bonnet theorem. For simplicity,
we usually restrict our attention to curves and surfaces in
euclidean space R3, although many of the results would eas-
ily generalize to other ambient manifolds of arbitrary dimen-
sion.

These notes are based on work by many people, but un-
fortunately do not include proper citations to the literature.

1 Smooth Curves and Surfaces

Before discussing discrete analogs, we briefly review the
usual theory of curvatures for smooth curves and surfaces
in space.

1.1 Smooth curves

The curvatures of a smooth curve γ are the local proper-
ties of its shape invariant under Euclidean motions. The
only first-order information is the tangent line; since all lines
in space are equivalent, there are no first-order invariants.
Second-order information is given by the osculating circle,
and the invariant is its curvature κ = 1/r.

For a plane curve given as a graph y = f(x) let us con-
trast the notions of curvature and second derivative. At a
point p on the curve, we can find either one by translating p
to the origin, transforming so the curve is horizontal there,
and then comparing to a standard set of reference curves.
The difference is that for curvature, the transformation is a
Euclidean rotation, while for second derivative, it is a shear
(x, y) !→ (x, y − ax). A parabola has constant second deriv-
ative f ′′ because it looks the same at any two points after a
shear. A circle, on the other hand, has constant curvature
because it looks the same at any two points after a rotation.

A plane curve is completely determined (up to rigid mo-
tion) by its (signed) curvature κ(s) as a function of arclength
s. For a space curve, however, we need to look at the third-
order invariants, which are the torsion τ and the deriva-
tive κ′ (which of course gives no new information). These
are now a complete set of invariants: a space curve is deter-
mined by κ(s) and τ(s). (Generally, for higher codimension,
higher-order invariants are needed. For curves in Rn, we
need n− 1 curvatures, of order up to n, to characterize the
shape.)

A smooth space curve γ is often described by its orthonor-
mal Frenet frame (T, N, B). With respect to an arclength

parameter s, the defining equations are T := γ′ and

T
N
B

′

=
0 κ 0
−κ 0 τ
0 −τ 0

T
N
B

.

For a curve γ lying on a surface M , it is often more use-
ful to consider the Darboux frame (T, η, ν), adapted to this
situation. This orthonormal frame includes the tangent vec-
tor T to γ and the normal vector ν to M . Its third element
is thus η := ν×T , called the cornormal. The curvature vec-
tor of γ decomposes into parts tangent and normal to M as
T ′ = κN = κgη+κnν. Here in fact, κn measures the normal
curvature of M in the direction T , and is independent of γ.

1.2 Smooth surfaces

Given a (two-dimensional, oriented) surface M (immersed)
in R3, we understand its local shape by looking at the Gauß
map ν : M → S2 given by the unit normal vector ν = νp at
each point p ∈M . We can view its derivative at p as a linear
endomorphism −Sp : TpM → TpM , since TpM and TνpS2

are naturally identified, being parallel planes in R3. The
map Sp is called the shape operator (or Weingarten map).

The shape operator is the second-order invariant (or cur-
vature) which completely determines the original surface M .
However, it is usually more convenient to work with scalar
quantities. The eigenvalues κ1 and κ2 of Sp are called prin-
cipal curvatures, and (since they cannot be globally distin-
guished) it is their symmetric functions which have geomet-
ric meaning.

We define the Gauß curvature K := κ1κ2 as the deter-
minant of Sp and the mean curvature H := κ1 + κ2 as its
trace. Note that the sign of H depends on the choice of unit
normal ν, and so often it is more natural to work with the
vector mean curvature (or mean curvature vector) H := Hν.
Note furthermore that some authors use the opposite sign
on Sp and thus H, and many use H = (κ1+κ2)/2, justifying
the name mean curvature. Our conventions mean that the
mean curvature vector for a convex surface points inwards
(like the curvature vector for a circle). For a unit sphere ori-
ented with inward normal, the Gauß map ν is the antipodal
map, Sp = I, and H = 2.

The Gauß curvature is an intrinsic notion, depending only
on the pullback metric on the surface M , and not on the im-
mersion into space. That is, K is unchanged by bending the
surface without stretching it. For instance, a developable
surface like a cylinder or cone has K = 0 because it is ob-
tained by bending a flat plane. One intrinsic definition of
K(p) is obtained by considering the circumferences Cε of
(intrinsic) ε-balls around p. We get

Cε

2πε
= 1− ε2

6
K +O(ε3).
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Mean curvature is certainly not intrinsic, but it has a nice
variational interpretation. Consider a variation vectorfield V
on M , compactly supported away from any boundary. Then
H = −δ Area /δ Vol in the sense that

δV Vol = V · ν dA, δV Area = − V · Hν dA.

With respect to the L2 inner product 〈U, V 〉 := Up · Vp dA
on vectorfields, the vector mean curvature is the negative
gradient of the area functional, often called the first variation
of area: H = −∇Area. (Similarly, the negative gradient of
length for a curve is κN .)

Just as κ is the geometric version of second derivative
for curves, mean curvature is the geometric version of the
Laplacian ∆. Indeed, if a surface M is written locally as the
graph of a height function f over its tangent plane TpM then
H(p) = ∆f . Alternatively, we can write H = ∇M ·ν = ∆Mx,
where x is the position vector in R3 and ∆M is Beltrami’s
surface Laplacian.

If we flow a curve or surface to reduce its length or area,
by following these gradients κN and Hν, the resulting par-
abolic heat flow is slightly nonlinear in a natural geometric
way. This so-called mean-curvature flow has been exten-
sively studied as a geometric smoothing flow.

1.3 Integral curvature relations for curves

The total curvature of a curve is κ ds. For closed curves,
the total curvature is at least 2π (Fenchel) and for knotted
space curves the total curvature is at least 4π (Fáry/Milnor).
For plane curves, we can consider instead the signed curva-
ture, and find that κ ds is always an integral multiple of 2π.

Suppose we define (following Milnor) the total curvature
of a polygonal curve simply to be the sum of the turning
angles at the vertices. Then all the theorems for smooth
curves mentioned in the previous paragraph remain true for
polygonal curves. Our goal, when defining curvatures for
polyhedral surfaces, will be to again ensure that integral
relations for these curvatures remain exactly true.

1.4 Integral curvature relations for surfaces

For surfaces, the integral curvature relations we want to con-
sider relate area integrals over a region D ⊂ M to arclength
integrals over the boundary γ = ∂D. The Gauß–Bonnet
theorem says, when D is a disk,

2π −
D

K dA =
γ

κg ds =
γ

T ′ · η ds = − η′ · dx,

where dx = T ds is the vector line element along γ. This
implies that the total Gauß curvature of D depends only
on a collar neighborhood of γ: if we make any modification
to D supported away from the boundary, the total curvature
is unchanged (as long as D remains topologically a disk).
We will extend the notion of Gauß curvature from smooth
surfaces to more general surfaces (in particular polyhedral
surfaces) by requiring this property to remain true.

The other relations are all proved by Stokes’ Theorem,
and thus only depend on γ being the boundary of D in a
homological sense; for these D is not required to be a disk.
First consider the vector area

Aγ := 1
2

γ

x× dx =
D

ν dA.

The right-hand side represents the total vector area of any
surface spanning γ, and the relation shows this to depend
only on γ (and this time not even on a collar neighborhood).
The integrand on the left-hand side depends on a choice of
origin for the coordinates, but because we integrate over a
closed loop, the integral is independent of this choice. Both
sides of this vector area formula can be interpreted directly
for a polyhedral surface, and the equation remains true in
that case.

A simple integral for curve γ from p to q says that

T (q)− T (p) =
q

p

T ′(s) ds = κN ds.

This can be viewed as a balance between tension forces try-
ing to shrink the curve, and sideways forces holding it in
place. It is the relation used in proving that κ is the first
variation of length.

The analog for a surface patch D is the mean curvature
force balance equation

γ

η ds = −
γ

ν × dx =
D

Hν dA =
D

H dA.

Again this represents a balance between surface tension
forces acting in the conormal direction along the boundary
of D and what can be considered as pressure forces (espcially
in the case of constant H) acting normally across D. We will
use this equation to develop the analog of mean curvature
for discrete surfaces.

Two other similar relations that we will not need later are
the torque balance

γ

x× η ds =
γ

x× (ν × dx) =
D

H(x× ν) dA

and the area relation

γ

x · η ds =
γ

x · (ν × dx) =
D

(H · x− 2) dA.

2 Discrete Surfaces

For us, a discrete or polyhedral surface M ⊂ R3 will mean a
triangulated surface with a PL map into space. In more de-
tail, we start with an abstract combinatorial triangulation—
a simplicial complex—representing a 2-manifold with bound-
ary. We then pick positions p ∈ R3 for every vertex, which
uniquely determine a linear map on each triangle; these fit
together to form the PL map.

2.1 Gauß curvature

It is well known how the notion of Gauß curvature extends
to such discrete surfaces M . Any two adjacent triangles
(or, more generally, any simply connected region in M not
including any vertices) can be flattened—developed isomet-
rically into the plane. Thus the Gauß curvature is supported
on the vertices p ∈ M . In fact, to keep the Gauß–Bonnet
theorem true, we must take

D

K dA :=
p∈D

Kp; Kp := 2π −
i

θi.

Here, the angles θi are the interior angles at p of the triangles
meeting there, and Kp is often known as the angle defect
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at p. If D is any neighborhood of p contained in Star(p),
then

∂D
η ds = θi; when the triangles are acute, this is

most easily seen by letting ∂D be the path connecting their
circumcenters and crossing each edge perpendicularly.

(Similar arguments lead to a notion of Gauß curvature—
defined as a measure—for any rectifiable surface. For our
polyhedral surface, this measure consists of point masses at
vertices. Surfaces can also be built from intrinsically flat
pieces joined along curved edges. Their Gauß curvature is
spread out with a linear density along these edges. This
technique is often used in designing clothes, where corners
would be undesirable.)

Note that Kp is clearly an intrinsic notion, as it should
be, depending only on the angles of each triangle and not
on the precise embedding into R3. Sometimes it is useful
to have a notion of combinatorial curvature, independent of
all geometric information. Given just a combinatorial tri-
angulation, we can pretend that each triangle is equilateral
with angles θ = 60◦, whether or not that geometry could
be embedded in space. The resulting combinatorial curva-
ture is Kp = π

3 (6 − deg p). In this context, the global form
Kp = 2πχ(M) of Gauß–Bonnet amounts to nothing more

than the definition of the Euler characteristic χ.

2.2 Vector area

The vector area formula

Aγ := 1
2

γ

x× dx =
D

ν dA

needs no special interpretation for discrete surfaces: both
sides of the equation make sense directly, since the surface
normal ν is well-defined almost everywhere. However, it is
worth interpreting this formula for the case when D is the
star of a vertex p. More generally, suppose γ is any closed
curve (smooth or polygonal), and D is the cone from p to
γ (the union of all line segments pq for q ∈ γ). Fixing γ
and letting p vary, we find that the volume enclosed by this
cone is a linear function of p, and Ap := ∇p Vol D = A/3 =
1
6 γ

x×dx. We also note that any such cone D is intrinsically
flat except at the cone point p, and that 2π−Kp is the cone
angle at p.

2.3 Mean curvature

The mean curvature of a discrete surface M is supported
along the edges. If e is an edge, and e ⊂ D ⊂ Star(e) =
T1 ∪ T2, then

He :=
D

H dA =
∂D

η ds = e× ν1 − e× ν2 = J1e− J2e.

Here νi is the normal vector to the triangle Ti, and Ji is
rotation by 90◦ in the plane of that triangle. Note that
|He| = 2|e| sin θe

2 where θe is the exterior dihedral angle
along the edge, defined by cos θe = ν1 · ν2.

No nonplanar discrete surface has He = 0 along every
edge. But this discrete mean curvature can cancel out
around the vertices. We set

2Hp :=
e$p

He =
Star(p)

H dA =
Link(p)

η ds.

The area of the discrete surface is a function of the ver-
tex positions; if we vary only one vertex p, we find that
∇p Area(M) = −Hp.

Suppose that vertices adjacent to p are p1, . . . , pn. Then
we have

3Ap = 3∇p Vol =
Star p

ν dA

= 1
2

Link p

x× dx = 1
2

i

pi × pi+1

and similarly

2Hp = Hppi = −2∇p Area = Ji(pi+1 − pi)

=
i

(cot αi + cot βi)(p− pi),

where αi and βi are the angles opposite edge ppi in the two
incident triangles.

Note that if we change the combinatorics of a discrete
surface M by introducing a new vertex p along an existing
edge e, and subdividing the two incident triangles, then Hp

in the new surface equals the original He, independent of
where along e we place p. This allows a variational interpre-
tation of He.

2.4 Minkowski mixed volumes

A somewhat different interpretation of mean curvature for
convex polyhedra is suggested by Minkowski’s theory of
mixed volumes (which actually dates in this form well ear-
lier). If X is a smooth convex body in R3 and Bt(X) denotes
its t-neighborhood, then

Vol(Bt(X)) = Vol X + t Area X +
t2

2 X

H dA +
t3

3 X

K dA.

Here, the last integral is always 4π.

When X is instead a convex polyhedron, the only term
that needs a new interpretation is

X
H dA. The correct

replacement for this term is then e |e| θe. This suggests
He := |e| θe as a notion of total mean curvature for the
edge e.

We note the difference between this formula and our ear-
lier |He| = 2|e| sin θe/2. Either one can be derived by re-
placing the edge e with a sector of a cylinder of length |e|
and arbitrary (small) radius r. We find then

H dA = He, H dA = He.

The difference is explained by the fact that one formula inte-
grates the scalar mean curvature while the other integrates
the vector mean curvature.

2.5 CMC surfaces and Willmore surfaces

A smooth surface which minimizes area under a volume con-
straint has constant mean curvature; the constant H can be
understood as the Lagrange multiplier for the constrained
minimization problem. A discrete surface which minimizes
area among surfaces of fixed combinatorial type and fixed
volume will have constant discrete mean curvature H in
the sense that at every vertex, Hp = HAp, or equivalently
∇p Area = −H∇p Vol. In general, of course, the vectors
Hp and Ap are not even parallel: they give two competing
notions of a normal vector at p.
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Still,

hp :=
|∇p Area |
|∇p Vol | =

|Hp|
|Ap| =

|
Star p

H dA|
|

Star p
ν dA|

gives a better notion of mean curvature near p
than, say, the smaller quantity 3|Hp|/ Area(Star(p)) =
| H dA|/ 1 dA.

For this reason, a good discretization of the Willmore elas-
tic energy H2 dA is given by p h2

p
1
3 Area(Star(p)).

2.6 Relation to discrete harmonic maps

Discrete minimal surfaces minimize area, but also have other
properties similar to those of smooth minimal surfaces. For
instance, in a conformal parameterization, their coordinate
functions are harmonic. We don’t know when in general a
discrete map should be considered conformal, but the iden-
tity map is certainly conformal. We have that M is dis-
crete minimal if and only if Id : M → R3 is discrete har-
monic. Here a PL map f : M → N is called discrete
harmonic if it is a critical point for the Dirichlet energy
E(f) := T |∇fT |2 AreaM (T ). We find that E(f)−Area N
is a measure of nonconformality. For the identity map,
E(IdM ) = Area(M) and ∇pE(IdM ) = ∇p Area(M) con-
firming that M is minimal if and only if IdM is harmonic.
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Chapter 4: 
A Discrete Model of Thin Shells

Eitan Grinspun
Columbia University

Figure 1: A measure of discrete strain is used to fracture a thin shell in this simulation of a shattering lightbulb.

Abstract

We describe a discrete model for the dynamics of thin flexible struc-
tures, such as hats, leaves, and aluminum cans, which are charac-
terized by a curved undeformed configuration. Previously such thin
shell models required complex continuum mechanics formulations
and correspondingly complex algorithms. We show that a simple
shell model can be derived geometrically for triangle meshes and
implemented quickly by modifying a standard cloth simulator. Our
technique convincingly simulates a variety of curved objects with
materials ranging from paper to metal, as we demonstrate with sev-
eral examples including a comparison of a real and simulated falling
hat.

This chapter is based on the publication by Eitan Grinspun, Anil
Hirani, Mathieu Desbrun, and Peter Schröder which appeared in
the Proceedings of the Symposium for Computer Animation 2003,
and on subsequent collaborations with the group of Denis Zorin at
New York University and Zoë Wood at Cal Poly San Luis Obispo.

1 Introduction

Thin shells are thin flexible structures with a high ratio of width to
thickness (> 100) [Ciarlet 2000]. While their well-known counter-
parts, thin plates, relax to a flat shape when unstressed, thin shells
are characterized by a curved undeformed configuration. Cloth, re-
cently studied in the computer animation literature, may be mod-
eled as a thin plate, since garments are typically constructed from
flat textiles. In stark contrast, thin-walled objects which are natu-
rally curved (e.g., leaves, fingernails), or put into that shape through
plastic deformation (e.g., hats, cans, carton boxes, pans, car bodies,
detergent bottles) are thin shells and cannot be modeled using plate
formulations.

Thin shells are remarkably difficult to simulate. Because of
their degeneracy in one dimension, shells do not admit to straight-
forward tessellation and treatment as three-dimensional solids; in-
deed, the numerics of such approaches become catastrophically ill-
conditioned, foiling numerical convergence and/or accuracy. Ro-
bust finite element methods for thin shell equations continue to be
an active and challenging research area.

In this chapter we develop a simple model for thin shells with
applications to computer animation. Our discrete model of shells

Figure 2: The local coordinate frame in a small neighborhood of a
thin shell: two axes span the middle surface, and the normal shell
director spans the thickness.

captures the same characteristic behaviors as more complex mod-
els, with a surprisingly simple implementation. We demonstrate the
realism of our approach through various examples including com-
parisons with real world footage (see Figure 4).

2 Kinematics
Since it is thin, the geometry of the shell is well described by its
middle-surface (see Figure 2). At any point on the middle sur-
face the local tangent plane and surface normal induce a coordinate
frame in which to describe “motion along the surface” and “motion
along thickness.”

In the discrete setting, the topology of the middle surface is
represented by the combinatorics of an oriented 2-manifold sim-
plicial complex, M = {v, e, f}, where v = {v1, v2, . . .}, e =
{e1, e2, . . .}, f = {f1, f2, . . .} are sets of vertices, edges and faces
respectively. The geometry of the middle surface is given by the
discrete configuration map, C : v 7→ R3, which assigns to every
vertex, vi, a position, C(vi), in the ambient space. Together M and
C correspond to the usual notion of a triangle mesh in R3; in our
exposition we assume fixed combinatorics M , and discuss a tem-
porally evolving configuration, Ct where the subscript refers to a
specific instant in time.

Restricting our attention to elastic (“memory-less”) materials,
the physics can be understood in terms of the undeformed config-
uration (the stress-free shape) and the deformed configuration (the
stressed shape at the current instant in time), C0 and C1, respec-
tively. The elastic response of a material depends on the change in
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Figure 3: Frames from the simulation of tumbling thin shell.

shape of the elastic body, and on the constitutive laws that describe
the restoring forces associated to this change in shape. The former
is a purely geometric quantity.

What is the change in shape between C0 and C1? Since rigid
motions (translations and rotations) do not affect shape, the answer
must be invariant under composition of C0 (likewise C1) with any
rigid body transformation. A simple theorem is that any reasonable
measure of change in shape, or generalized strain, may be written
as a function of only the edge lengths and dihedral angles of C0 and
C1. The proof lies in showing that the configuration can be com-
pletely recovered from the edge lengths and dihedral angles, up to
an unknown (but here inconsequential) rigid body transformation.
We will also expect our measure of strain to be zero when shape
has not changed, and non-zero whenever shape has changed. In
particular, strain should “see” any local change in shape.

Perhaps the simplest forms of generalized strain which satisfy
these desiderata are two expressions that are evaluated at a specific
edge ei. Comparing C0 to C1, let se(ei) be the difference in length
of edge ei, and let sθ(ei) be the difference in dihedral angle at ei.

While these are perhaps the simplest possible measures of gener-
alized strain, other more complex formulas can offer attendant ad-
vantages. Recent research in discrete shell models has focused on
functions evaluated over mesh faces which aggregate in one term
the configuration of all the incident edge lengths and dihedral an-
gles [Gingold et al. 2004]. Nevertheless, our goal here is to develop
the simplest discrete model of thin shells capturing their qualitative
elastic behavior.

3 Constitutive Model

Having defined the geometry of thin shells, we turn our attention
to the governing physical equations. The stored elastic energy of a
thin shell is at the heart of the equations which govern its response
to elastic deformations. The stored energy, W [C0, C1], should be a
function of the local strain, integrated over the middle surface.

We choose the simplest expression for energy that is consistent
with Hookean mechanics. In 1676 Robert Hooke stated

The power [sic.] of any springy body is in the same
proportion with the extension.

This statement was the birth of modern elasticity, which states that
a first order approximation for the response of a material is a force
proportional to strain, and consequently (by the definition of work
as force over distance) that the first approximation of stored energy
is quadratic in strain. We propose an energy with two kinds of
terms, measuring stretching and bending modes respectively:

WM [C0, C1] =
X

ei∈M

ke
i ·

`
se(ei)

´2
+

X
ek∈M

kθ
k ·

`
sθ(ek)

´2
,

This expression has several desirable properties. First, it is pos-
itive whenever the shapes of C0 and C1 differ, and zero other-
wise. Second, evaluations over subsets of M satisfy the usual in-
clusion/exclusion principle: for A, B ⊂ M , WM = WA + WB −
WA∩B , which is consistent with continuum formulations in which
energy is defined as an integral of energy density over the middle

surface. Third, because strain is invariant under rigid body transfor-
mations of the undeformed and deformed configurations, Nöther’s
theorem guarantees that the resulting dynamics will conserve linear
and angular momentum. Consider the following interpretations of
the membrane and bending terms:

Membrane Elastic surfaces resist stretching (local change in
length). While some materials such as rubber sheets may undergo
significant deformations in the stretching or shearing (membrane)
modes, we focus on inextensible shells which are characterized by
nearly isometric deformations, i.e., possibly significant deforma-
tions in bending but unnoticeable deformation in the membrane
modes. Most membrane models for triangle meshes satisfy this
small-membrane-strain assumption with choice of suitably large
membrane stiffness coefficient, ke

i .
Rewriting the membrane term in the following form permits an

alternative interpretation:

W e(ei) = ke (|ei| − |ēi|)2 = ke|ēi|2
„
|ei|
|ēi|

− 1

«2

where |ei| is the length of edge i, quantities with a bar (such as
ēi) refer to the undeformed configuration C0 and remaining quanti-
ties are with respect to C1; note that we have dropped the subscript
on ke

i indicating a uniform material stiffness over the domain of
interest. This is a unitless strain measurement, squared, and then
integrated over the area of the local neighborhood, and multiplied
by the material-dependent parameters. Observe that under regu-
lar refinement of a triangle mesh, the local area indeed scales as
|ēj |2, which has units of area. The units of the material parameters
are energy per unit area, i.e., surface energy density. In engineering
models of shells, the material parameter is given as a volume energy
density, and the energy is integrated over shell thickness yielding a
surface energy density. Efficient implementations of this formula
precompute the quantities ke|ēi|2, which depend only on the unde-
formed configuration.

Bending Consider the proposed discrete bending energy in rela-
tion to its continuous analogues. Models in mechanics are typically
based on tensors, and in particular shell models use the difference
of the second fundamental forms [Gray 1998] in the deformed and
undeformed configurations (pulling back the deformed tensor onto
the undeformed configuration). These treatments derive tensorial
expressions over smooth manifolds, and as a final step discretize to
carry out the numerics.

The shape operator [Gray 1998] is the derivative of the Gauss
map1: geometrically, it measures the local curvature at a point on a
smooth surface. Our bending energy is an extrinsic measure of the
difference between the shape operator evaluated on the deformed
and undeformed surfaces. We express this difference as the squared
difference of mean curvature:

[Tr(ϕ∗S)− Tr(S̄)]2 = 4(H ◦ ϕ− H̄)2 , (1)

where S̄ and S are the shape operators evaluated over the unde-
formed and deformed configurations respectively; likewise H̄ and
H are the mean curvatures; ϕ∗S is the pull-back of S onto Ω̄,
and we use Tr(ϕ∗S) = ϕ∗ Tr(S) = Tr(S) ◦ ϕ = H ◦ ϕ
for a diffeomorphism ϕ. This measure is extrinsic: it sees only
changes in the embedding of the surface in R3. Integrating (1)
over the reference domain we find the continuous flexural energyR
Ω̄

4(H ◦ ϕ − H̄)2dĀ. Next, we discretize this integral over the
piecewise linear mesh that represents the shell.

We derive the discrete, integral mean-curvature squared op-
erator as follows. We first partition the undeformed surface

1This is the map from the surface to the unit sphere, mapping each sur-
face point to its unit surface normal.
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Figure 4: Real footage vs. Simulation: left, a real hat is dropped on
a table; right, our shell simulation captures the bending of the brim.
Notice that volumetric-elasticity, plate, or cloth simulations could
not capture this behavior, while earlier work on shell simulation
required significant implementation and expertise.

into a disjoint union of diamond-shaped tiles, T̄ , associated to
each mesh edge, e, as indicated on the side figure. Following
[Meyer et al. 2003], one can use the barycenter of each trian-
gle to define these regions—or alternatively, the circumcenters.

h
e

T
e

Over such a diamond, the mean cur-
vature integral is

R
T̄

H̄dĀ = θ̄|ē| (for
a proof see [Cohen-Steiner and Mor-
van 2003]). A similar argument leads
to:

R
T̄
(H ◦ϕ− H̄)dĀ = (θ− θ̄)|ē|.

Using the notion of area-averaged
value from [Meyer et al. 2003], we
deduce that (H ◦ ϕ − H̄)|T̄ = (θ −
θ̄)/h̄e, where h̄e is the span of the un-
deformed tile, which is one sixth of
the sum of the heights of the two tri-
angles sharing ē. For a sufficiently
fine, non-degenerate tessellation approximating a smooth surface,
the average over a tile (converging pointwise to its continuous
counterpart) squared is equal to the squared average, leading to:R

T̄
(H ◦ ϕ− H̄)2dĀ = (θ − θ̄)2|ē|/h̄e.

We might instead consider a formula of the form (θ − θ̄)2|ē|.
Here the energy functional becomes dependent only on its piece-
wise planar geometry not on the underlying triangulation. An at-
tractive claim, this is appealing in that a material’s physical energy
should depend on its shape, not on the discretization of the shape.
Unfortunately, there is no discretization of (1) that simultaneously
is (a) dependent only on the geometry not its triangulation, and (b)
converges to its continuous equivalent under refinement. Indeed,
the area integral of (1) is in general unbounded for a piecewise pla-
nar geometry! A discrete energy satisfying both (a) and (b) may
exist for smoother surfaces, but our focus is piecewise planar (tri-
angle mesh) geometry.

Following the argument found in [Meyer et al. 2003], there may

be numerical advantages in using circumcenters instead of barycen-
ters for the definition of the diamond tiles (except in triangles with
obtuse angles). This affects the definition of h̄e and of the lumped
mass. Since we only need to compute these values for the unde-
formed shape, the implementation and performance only of initial-
ization code would be affected. Bobenko notes that when circum-
centers are used, this formulation of discrete shells coincides (for
flat undeformed configurations) with the derivation of the discrete
Willmore energy based on circle packing [Bobenko 2004],.

As we have just seen, we can express our discrete flexural energy
as a summation over mesh edges,

W θ(ek) = Kθ `
θk − θ̄k

´2 |ēk|
h̄k

, (2)

e
θewhere the term for edge ek is where

θk and θ̄k are corresponding comple-
ments of the dihedral angle of edge
ek measured in the deformed and un-
deformed configuration respectively,
Kθ is the material bending stiffness,
and h̄k is a third of the average of the
heights of the two triangles incident to the edge ek (see the appendix
for another possible definition of h̄k). Note that the unit of Kθ is
energy (not surface energy density). This formulation is consis-
tent with the physical scaling laws of thin shells: if the (deformed
and undeformed) geometry of a thin shell is uniformly scaled by
λ along each axis, then surface area scales as λ2 as does the total
membrane energy, however the total bending (curvature squared)
energy is invariant under uniform scaling.

Following the reasoning for (1), we could have formed a second
energy term taking the determinant instead of the trace of S. This
would lead to a difference of Gaussian curvatures, but this is al-
ways zero under isometric deformations (pure bending). This is not
surprising, as Gaussian curvature is an intrinsic quantity, i.e., it is
independent of the embedding of the two-dimensional surface into
its ambient three-dimensional space. In contrast, flexural energy
measures extrinsic deformations.

4 Dynamics

The treatment of the temporal evolution of a thin shell is beyond the
scope of this chapter; we briefly summarize the basic components
required to simulate the motion of thin shells.

Our dynamic system is governed by the ordinary differential
equation of motion ẍ = −M−1 ∇W (x) where x is the vector
of unknown DOFs (i.e., the vertices of the deformed geometry) and
M is the mass matrix. We use the conventional simplifying hypoth-
esis that the mass distribution is lumped at vertices: the matrix M
is then diagonal, and the mass assigned to a vertex is a third of the
total area of the incident triangles, scaled by the area mass density.

Newmark Time Stepping We adopt the Newmark
scheme [Newmark 1959] for ODE integration,

xi+1 = xi + ∆tiẋi + ∆t2i
`
(1/2− β)ẍi + βẍi+1

´
,

ẋi+1 = ẋi + ∆ti

`
(1− γ)ẍi + γẍi+1

´
,

where ∆ti is the duration of the ith timestep, ẋi and ẍi are configu-
ration velocity and acceleration at the beginning of the ith timestep,
respectively, and β and γ are adjustable parameters linked to the
accuracy and stability of the time scheme. Newmark is either an
explicit (β = 0) or implicit (β > 0) integrator: we used β = 1/4
for final production, and β = 0 to aid in debugging. Newmark
gives control over numerical damping via its second parameter γ.
We obtained the best results by minimizing numerical damping
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(γ = 1/2); this matches Baraff and Witkin’s observation that nu-
merical damping causes undesirable effects to rigid body motions.
See also [West et al. 2000] for a discussion of the numerical advan-
tages of the Newmark scheme.

Dissipation Shells dissipate energy via flexural oscillations. To
that end we complete our model with an optional damping force
proportional to (θ̇− ˙̄θ)∇θ where ˙̄θ = 0 for elastic deformations but
is in general non-zero for plastoelastic deformations. This is con-
sistent with standard derivations of Rayleigh-type damping forces
using the strain rate tensor [Baraff and Witkin 1998].

Discussion This discrete flexural energy (2) generalizes es-
tablished formulations for (flat) plates both continuous and dis-
crete: (a) Ge and coworkers presented a geometric argument
that the stored energy of a continuous inextensible plate has the
form

R
Ω̄

cHH2 + cKKdA for material-specific coefficients cH

and cK [Ge et al. 1996]; (b) Haumann used a discrete hinge en-
ergy [Haumann 1987], similarly Baraff and Witkin used a dis-
crete constraint-based energy [Baraff and Witkin 1998], of the form
WB(x) =

P
ē θ2

e . Our approach generalizes both (a) and (b), and
produces convincing simulations beyond the regime of thin plate
and cloth models (see Section 5).

The proposed discrete model has three salient features: (a) the
energy is invariant under rigid body transformation of both the un-
deformed and the deformed shape: our system conserves linear and
angular momenta; (b) the piecewise nature of our geometry descrip-
tion is fully captured by the purely intrinsic membrane terms, and
the purely extrinsic bending term; most importantly, (c) it is simple
to implement.

5 Results

We exercised our implementation on various problems, including
fixed beams, falling hats, and pinned paper. Computation time, on
a 2GHz Pentium 4 CPU, ranged from 0.25s–3.0s per frame; timings
are based on a research implementation that relies on automatic dif-
ferentiation techniques.

flat beam v beam

Figure 5: Three pairs of flat and v-beams with increasing flexural
stiffness Kθ (left to right) of 100, 1000, and 10000; the non-flat
cross section of the v-beam contributes to structural rigidity.

Beams We pinned to a wall one end of a v-beam, and released
it under gravity. Figure 5 demonstrates the effect of varying flex-
ural stiffness on oscillation amplitude and frequency. The flexural
energy coefficient has a high dynamic range; extreme values (from
pure-membrane to near-rigid) remain numerically and physically
well-behaved. Observe that increasing flexural stiffness augments
structural rigidity. Compare the behavior of beams: the non-flat
cross section of the v-beam contributes to structural rigidity. This
difference is most pronounced in the operating regime of low flex-
ural stiffness (but high membrane stiffness). Here the material does
not inherently resist bending, but a V-shaped cross-section effec-
tively converts a bending deformation into a stretching deformation.

Figure 6: Modeling a curled, creased, and pinned sheet of paper:
by altering dihedral angles of the reference configuration, we effect
plastic deformation. While the rendering is texture-mapped we kept
flat-shaded triangles to show the underlying mesh structure.

One can mimic this experiment by holding a simple paper strip by
its end; repeat after folding a v-shaped cross-section.

Elastic hats We dropped both real and virtual hats and com-
pared (see Figure 4): the deformation is qualitatively the same, dur-
ing impact, compression, and rebound. Adjusting the damping pa-
rameter, we capture or damp away the brim’s vibrations. Adjusting
the flexural stiffness, we can make a hat made of hard rubber or
textile of a nearly-rigid hat and a floppy hat).

Plastoelasticity As discussed in the early work of Kergosien
and coworkers, a compelling simulation of paper would require a
mechanical shell model [Kergosien et al. 1994]. Using our simple
shell model, we can easily simulate a sheet of paper that is rolled,
then creased, then pinned (see Figure 6). Here the physics require
plastic as well as elastic deformations. We begin with a flat sur-
face, and gradually increase the undeformed angles, θ̄e. Notice:
modifying the undeformed configuration effects a plastic deforma-
tion. The kinematics of changing θ̄e span only physically-realizable
bending, i.e., inextensible plastic deformations. In contrast, directly
modifying x̄ could introduce plastic deformations with unwanted
membrane modes. We introduced elastic effects by applying three
pin constraints to the deformed configuration. Observe the half-
crease on the left side. The energy of the undeformed state is no
longer zero! The (plastically-deformed) left and (untouched) right
halves have incompatible undeformed shapes, consequently the un-
deformed configuration is not stress-free.

Figure 7: Virtual origami: user-guided simulated folding of a paper
sheet produces a classical origami dog.
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Recent extensions More recently, we demonstrated that sim-
ple, discrete models of thin shells can also produce striking exam-
ples of shattering glass (see Figure 1) [Gingold et al. 2004], and
paper origami (see Figure 7) [Burgoon et al. 2006].

Implementation An attractive practical aspect of the proposed
model is that it may be easily incorporated into working code of a
standard cloth or thin-plate simulator such as those commonly used
by the computer graphics community [Baraff and Witkin 1998].
One must replace the bending energy with (2). From an imple-
mentation point of view, this involves minimal work. For exam-
ple, consider that [Baraff and Witkin 1998] already required all the
computations relating to θe. These and other implementation de-
tails were outlined in [Grinspun et al. 2003].

6 Further Reading

A comprehensive survey of this expansive body of literature is far
beyond the scope of this chapter; as a starting point see [Arnold
2000; Cirak et al. 2002] and references therein. Here we highlight
only a few results from the graphics and engineering literature.

Recently, novel numerical treatments of shells, significantly
more robust than earlier approaches, have been introduced in me-
chanics by Cirak et al. [Cirak et al. 2000] and in graphics by
Green et al.and Grinspun et al. [Green et al. 2002; Grinspun et al.
2002] among others. These continuum-based approaches use the
Kirchoff-Love constitutive equations, whose energy captures curva-
ture effects in curved coordinate frames; consequently they model
a rich variety of materials. In contrast, thin plate equations assume
a flat undeformed configuration. Thin plate models are commonly
used for cloth and garment simulations and have seen successful
numerical treatment in the computer graphics literature (see [House
and Breen 2000] and references therein). Thin plates have also been
useful for variational geometric modeling [Celniker and Gossard
1991; Greiner 1994; Welch and Witkin 1992] and intuitive direct
manipulation of surfaces [Qin and Terzopoulos 1996; Terzopou-
los and Qin 1994]. In graphics, researchers have used two kinds
of approaches to modeling plates: finite-elements and mass-spring
networks. In the latter resistance to bending is effected by springs
connected to opposite corners of adjacent mesh faces. Unfortu-
nately, this simple approach does not carry over to curved unde-
formed configurations: the diagonal springs are insensitive to the
sign of the dihedral angles between faces.

In this chapter we have developed a very simple discrete model
of thin shells. One price that must be paid for this simplicity is that,
while we have taken care to ensure the correct scaling factors for
each energy term, for an arbitrary triangle mesh we cannot guar-
antee the convergence of this model to its continuum equivalent.
In [Grinspun et al. ] we present experimental results comparing the
convergence of the discrete shell and other discrete curvature oper-
ators.
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Chapter 5:
Simple and Efficient Implementation of Discrete Plates and Shells
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Figure 1: Snapshots from our simulation of a billowing flag. Despite its economy of cost, the proposed bending model achieves qualitatively
the same dynamics as popular nonlinear models.

Abstract

Efficient computation of curvature-based energies is important for
practical implementations of geometric modeling and physical sim-
ulation applications. Building on a simple geometric observation,
we propose a hinge-based bending model that is simple to imple-
ment, efficient to compute, and offers a great number of effec-
tive material parameters. Our formulation builds on two math-
ematical observations: (a) the bending energy of a thin flexible
plate (resp. shell) can be expressed as a quadratic (resp. cubic)
polynomial of surface positions provided that the surface does not
stretch; (b) a general class of anisotropic materials—those that are
orthotropic—is captured by appropriate choice of a single stiffness
per hinge. We provide two approaches for deriving our isometric
bending model (IBM): a purely geometric view and a derivation
based on finite elements. By offering a highly efficient treatment of
force Jacobians, our model impacts the speed of a general range of
surface animation applications, from isotropic cloth and thin plates,
over orthotropic fracturing of thin shells, to Willmore-type surface
fairing.

The present notes are condensed from previous articles by the
authors: [Bergou et al. 2006], [Garg et al. 2007], and [Wardetzky
et al. 2007]—augmented by a finite element treatment that was not
present in these earlier works.

1 Introduction

Many animation applications require simple and efficient simula-
tion of a general class of elastic surfaces. This class includes objects
that are (a) flat (plates) or curved (shells) in their undeformed state,
(b) flexible or nearly rigid and (c) isotropic or anisotropic in their
response to bending. In mesh-based simulation, hinge-based meth-
ods are preferred for their simplicity and economy of computation.
Considering every two triangles meeting at an edge to be a bending
hinge, such methods require that some function of the dihedral an-
gle is subject to a restoring force. Empirically, hinge-based models
are known to work well for isotropic materials, and for geometric
models of anisotropy based on Euler’s curvature formula [Baraff

and Witkin 1998; Volino and Magnenat-Thalmann 2006]. For a
survey of bending models used in animation, see [Thomaszewski
and Wacker 2006].

Nearly Inextensible Surfaces In this chapter we explore the
interrelation between isometry, differential operators, and curva-
ture energy. Specifically, we present what seems to be the sim-
plest and most efficient hinge-based bending model to encompass
the spectrums (a), (b), and (c), at the cost of restricting our atten-
tion to nearly inextensible surfaces, i.e., surfaces that prefer to bend
much more than to stretch. The importance of isometry for sim-
plification of energy was previously acknowledged in the context
of surface fairing and modeling, e.g., by Desbrun et al. [1999] and
later Schneider et al. [2001]. We focus primarily on the simula-
tion of inextensible plates and shells where physics dictates quasi-
isometry: membrane stiffness typically is greater than bending stiff-
ness by four or more orders of magnitude (cf. Koiter’s model [Cia-
rlet 2000]) and the advantages of isometry can be exploited in full.

First, we introduce a hinge-based bending model that preserves
a key property of the smooth setting: the bending energy of a thin
plate (resp. shell) is quadratic (resp. cubic) under isometric defor-
mations. To understand the consequences of this statement, con-
sider that bending energy is in general a highly nonlinear functional
of the surface position; therefore, the implementation of implicit
solvers for thin shells involves relatively complex derivation and
costly computation of the nonlinear bending force Jacobian. How-
ever, under the assumption of quasi-isometry, we show that imple-
mentation can be reduced to a one-time precomputation of an ap-
proximate Jacobian matrix, and implicit time stepping routines can
use an inexact Newton method for significant performance gains.
Shells simulated with this method conserve both linear and angular
momenta.

Second, we treat anisotropy, where mechanical response de-
pends on the direction of applied strain. We present a bending
model for orthotropic materials, exposing an important physical
parameter—the shear modulus—which affects the drapability of a
fabric [Sidabraite and Masteikaite 2002]. Perhaps due to their small
stencil, hinge-based models in computer animation have eluded the
incorporation of orthotropic response until recently.
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Overview By first considering isotropic bending, we expose the
quadratic and cubic nature of bending energies of smooth plates and
shells, respectively (§2.1). We then take this analysis to the discrete
settings (§2.2), and establish the quadratic and cubic hinge as our
discrete building block. We offer two parallel views: a purely geo-
metric one (§3.1) and a derivation based on finite elements (§3.2).
Next, we introduce orthotropy (§4) and show that it is captured by
a scalar hinge stiffness (§4.1). Finally, we describe the efficient
implementation of our model (§5), and discuss a battery of experi-
ments demonstrating its efficiency and efficacy (§6–§8).

2 Isotropic Bending

2.1 The Isometric Bending Model (IBM)

Consider a smooth surface deformed away from its natural (unde-
formed) shape. To this deformation we associate the isotropic bend-
ing energy

Eb(x) =
1

2

Z
S

(H − H̄)2dA . (1)

This is the integral, over the undeformed surface, of the squared
change in mean curvature. Here x denotes the position of the de-
formed surface, i.e., x(p) is a 3-vector for each point p ∈ S, and
H is the mean curvature function of the deformed surface. A bar
(e.g., H̄) denotes the corresponding quantity evaluated on the un-
deformed surface. The special case of flat undeformed shapes, or
plates, corresponds to H̄ = 0.

Although not immediately apparent from (1), Eb(x) is actually
a cubic polynomial in x under isometric deformations, i.e., if the
surface is allowed to bend but not to stretch. For the special case
of H̄ = 0, the energy is a quadratic polynomial. To see this,
rewrite (1) as

Eb(x) =
1

2

Z
S

`
〈H,H〉 − 2〈H, H̄n̂〉+ H̄2´ dA . (2)

Here 〈·, ·〉 denotes the standard inner product in 3-space, and H =
Hn̂ stands for the mean curvature normal, a vector parallel to the
surface’s unit normal, n̂. The mean curvature vector can be ex-
pressed as

H = ∆x , (3)

the surface’s intrinsic Laplacian applied to the (3-component) posi-
tion of the surface. For isometric deformations of the surface, two
facts follow: (F1) Since ∆ is intrinsic, and therefore invariant under
isometric surface deformations, H is linear in surface position, thus
〈H,H〉 is quadratic in x, as observed in [Bergou et al. 2006]. (F2)
The surface normal is quadratic1 in x; therefore, 〈H, H̄n̂〉 is cubic.
It follows that Eb(x) is a cubic polynomial in x, because 〈H, H̄n̂〉
is cubic, 〈H,H〉 is quadratic, and H̄2 does not depend on x. While
(F1) applies to both thin plates and shells, (F2) is unique to shells
(H̄ 6= 0).

2.2 The Discrete IBM

From a differential geometry point of view, the above observations
offer no surprises. However, they have a number of very practical
consequences when carried over to the discrete case. In this setting
one begins with a discrete notion of mean curvature or a discrete

1To see that n̂ is quadratic, write n̂ = ∂x
∂u

× ∂x
∂v

, and observe that
orthonormality of tangent vectors, ∂x

∂u
and ∂x

∂v
, is preserved under isometric

deformations.
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Figure 2: Top-left: Hinge stencil for an interior edge. Top-middle
and -right: Perpendicular vectors used in the computation. Bottom:
Hinge in 3-space with corresponding labels.

Laplacian if one seeks a discrete version of (1), (2), and (3). While
DDG operators are extensively studied [Pinkall and Polthier 1993;
Mercat 2001; Meyer et al. 2003; Bobenko 2005; Cohen-Steiner and
Morvan 2006], our aim here is to seek operators that satisfy a dis-
crete IBM: a bending energy quadratic in positions for plates and
cubic for shells under the class of discrete isometric deformations.
Therefore we must begin with a reasonable definition of isometry,
which in the case of triangulated surfaces we take to be that (a)
bending occurs only along edges, and (b) edges may not stretch.
In reality, the second clause is relaxed, i.e., we consider discrete
quasi-isometry.

Hinge-based Bending Energy Consider a triangle mesh
whose shape before deformation is given by the vector of vertex
positions x̄. When the mesh is deformed to position x, the usual
hinge-based bending energy [Baraff and Witkin 1998; Bridson et al.
2003; Grinspun et al. 2003; Bergou et al. 2006; Thomaszewski and
Wacker 2006] is given by2

Eb(x) =
1

2

X
i

3|ēi|2

Āi

„
2 sin

θi − θ̄i

2

«2

. (4)

Here the sum is taken over all interior edges, Āi denotes the com-
bined area of the two triangles incident to edge ēi, and θi denotes
the dihedral angle at edge i.

Our goal is to establish an important, and previously overlooked,
property of (4): under isometric deformations, it is a cubic poly-
nomial in x, and in fact quadratic for the case of discrete plates
(θ̄ = 0). This observation will expose a much more efficient im-
plementation than is directly evident from (4); for details on this
implementation, refer directly to §5.

3 The Quadratic & The Cubic Hinge

The discrete energy (4) can be written as a sum over contributions
from every hinge (indexed by i). Using the identity 2 sin2 u =

2For planar rest state (θ̄ = 0) we have limθ→0 2 sin θ/2 =
limθ→0 2 tan θ/2 = θ, so that models that use 2 sin θ/2, 2 tan θ/2, or
θ coincide in the limit of an appropriate refinement sequence.
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1 − cos 2u, with u = (θ − θ̄)/2, we arrive at an expression of
energy associated to the ith hinge:

Eb(x)i =
3|ēi|2

Āi
(1− cos(θi − θ̄i)) . (5)

In this section, we prove that for isometric deformations this hinge
energy is cubic in x. We offer two parallel proofs: a geometric one
and a finite element derivation.

3.1 Geometric View

Our derivation uses the geometric construction in Figure 2, which
defines local indices of the triangles, {T0, T1}, edge vectors,
{e0, . . . , e4}, and vertex positions, {x0, . . . ,x3}, associated to a
hinge. Note the construction of perpendiculars ti: each edge vec-
tor ei is rotated 90 degrees, on the plane of the triangle, to point
outwards (thus |ti| = |ei| and 〈ti, ei〉 = 0). Since e0 is associated
to two triangles, we construct two perpendiculars, t(0)

0 and t
(1)
0 , on

the planes of triangles T0 and T1 respectively.
Expressing the perpendiculars t

(0)
0 (resp. t

(1)
0 ) in the edge basis

{e1, e3} (resp. {e2, e4}) we obtain

t
(0)
0 = − cot α03e1 − cot α01e3 , (6)

t
(1)
0 = − cot α04e2 − cot α02e4 . (7)

Under isometric deformation, interior angles remain constant,
therefore t

(0)
0 and t

(1)
0 are linear expressions in the position of the

mesh. Furthermore, the geometry of Fig. 2-bottom reveals that3

cos θ =
−〈t(0)

0 , t
(1)
0 〉

|e0|2
, and sin θ = −β[e0, e1, e2]

|e0|2
,

where [ei, ej , ek] is the scalar triple product (ei × ej) · ek, and
β = 1

|e0|
(cot α01 + cot α03)(cot α02 + cot α04).

Expanding (5) by the identity cos(θ − θ̄) = cos θ cos θ̄ +
sin θ sin θ̄, substituting the above expressions for cos θ and sin θ,
and simplifying the resulting expression by using the isometry as-
sumption (|ēi| = |ei|) we find that (5) equals

3

Ā0

“
|ē0|2 + 〈t(0)

0 , t
(1)
0 〉 cos θ̄

”
| {z }

thin plate component

+
3β̄

Ā0
[e0, e1, e2] sin θ̄| {z }

cubic term

. (8)

Under isometry, the energy associated to an individual hinge is a
cubic polynomial in x. We have thus established that—as in the
smooth picture—the discrete bending energy (4) is cubic. Note that
for the special case θ̄ = 0, we recover the quadratic bending thin
plate energy of [Bergou et al. 2006] simply by substituting (6) and
(7) into (8).

3.2 Finite Element Derivation

Our discrete IBM may be explained in terms of so-called non-
conforming Crouzeix-Raviart (CR) finite elements. This analysis is
primarily a theoretical contribution that achieves two goals: (a) to

3The expression for sin θ was derived from

sin θ =
〈t(0)0 ,n(1)〉

|e0|2
= −

[t
(0)
0 , t

(1)
0 , e0]

|e0|3
= −

β[e0, e1, e2]

|e0|2
,

where n(1) = (|e0|/|e4 × e2|)e4 × e2 is a scaled triangle normal. The
last step is obtained by using (6) and (7) to replace t

(0)
0 and t

(1)
0 , followed

by observing that e4 = e2 − e0 and e3 = e1 − e0 .

retroactively understand the bending models of [Baraff and Witkin
1998; Bridson et al. 2003; Grinspun et al. 2003] in terms of fi-
nite elements, and (b) to provide the theoretical foundation for the
anisotropic model of §4.

CR elements are non-conforming elements which are linear on
triangles and have their degrees of freedom (DOFs) associated with
edges. A CR basis, {φi}, is given by those functions φi for which
φi(j) = δij , where δij is the Kronecker delta. The corresponding
stiffness and mass matrices take the respective forms

Kij =

Z
S

〈∇φi,∇φj〉dA and Mij =

Z
S

φiφjdA , (9)

where ∇ denote the gradient operator.
Similarly to (3), the pointwise mean curvature vector is a vector-

valued function over the surface whose coefficient vector in the
above CR basis is given by

H = M−1 K Tx , (10)

where the linear transformation operator T takes the mesh embed-
ding, x, having vertex-based DOFs, to the space of CR functions
having edge-based DOFs (see below). To better understand (10),
consider the weak-form formulation of (3), i.e.,Z

S

φH dA =

Z
S

φ∆xdA =

Z
S

〈∇φ,∇x〉dA , (11)

where φ is a scalar (test) function on S and 〈∇φ,∇x〉 denotes the
vector-valued function evaluated separately for each of the three
components of the embedding function x. The apparently missing
minus sign in the last equality of (11) is due to our sign convention
for the Laplace operator, which we require to be positive, and not
negative, semi-definite. Moving to the discrete case and using the
CR basis, we can write

x =
X

i

φi(Tx)i and H =
X

i

φiHi , (12)

where (Tx)i and Hi are edge-based coefficient vectors. Notice
that our discrete mesh is given by vertex-based DOFs; therefore we
need the linear transformation T to map those DOFs to edge-based
ones. Consequently, if xp and xq denote two mesh vertices that
are connected by edge ei, then (Tx)i = (xp + xq)/2. Finally, by
plugging (12) into (11) and using (9), we immediately arrive at (10).

Each coefficient vector in (12) corresponds to the edge-based
mean curvature vector

Hi =
3|ei|
Ai

„
2 sin

θi

2

«
n̂i , (13)

where Ai is the area of ei’s hinge stencil as before, and n̂i is the
angle-bisecting normal of the dihedral angle at edge ei. This for-
mula is obtained from an explicit calculation of the entries of the
mass and stiffness matrix in (9). In particular, the CR mass ma-
trix is diagonal and satisfies Mii = Ai/3; therefore, as observed
in [Wardetzky et al. 2007], the thin plate energy can be written as

Eb(x) =
1

2

X
i

Mii H
2
i =

X
i

Ai

6
H2

i .

However, without the intuition gained from the geometric picture
in §3.1, it is not trivial to extend the CR viewpoint to the thin shell
setting. From the smooth energy, (2), and the corresponding dis-
crete energy, (8), it follows that one needs to treat three terms in the
FE discretization. The CR formulation of the first and third terms
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follows directly from the thin plate setting:Z
S

H2dA ∼
X

i

Ai

3
H2

i

 
=
X

i

3|ei|2

Ai

„
2 sin

θi

2

«2
!

,

(14)Z
S

H̄2dA ∼
X

i

Āi

3
H̄2

i

 
=
X

i

3|ēi|2

Āi

„
2 sin

θ̄i

2

«2
!

.

(15)

The cubic term, HH̄ = 〈H, H̄n̂〉, requires special treatment in the
discrete case: Hi and H̄i are in general not parallel vectors, thus
HH̄ 6= 〈Hi, H̄i〉. We approximate collinearity by conceptually
applying a rigid transformation to the isometrically deformed mesh
such that the positions of the triangles T̄0 and T0 coincide4. Such a
rigid transformation does not alter elastic energy, but it in the limit
of mesh refinement it attains Hi‖H̄i.

With this (conceptual) transformation in effect, we may evaluate
HH̄ ≈ 〈Hi, H̄i〉 = |Hi||H̄i| cos ∠(Hi, H̄i). The lengths |Hi|
and |H̄i| are obtained via (13). To obtain ∠(Hi, H̄i), observe that
edge-based mean curvature vectors bisect the dihedral angle of their
incident flap triangles; therefore, ∠(Hi, H̄i) = (θi − θ̄i)/2. As-
sembling these observations, and using that under isometry we have
|ei| = |ēi| and Ai = Āi, the cubic term is given by HH̄ ≈

〈Hi, H̄i〉 =
9|ēi|2

Ā2
i

„
2 sin

θi

2

«„
2 sin

θ̄i

2

«
cos

θi − θ̄i

2
. (16)

Together, (14), (15), and (16) simplify to Eb(x)i =

Āi

6

`
H2

i + H̄2
i − 2〈Hi, H̄i〉

´
=

3|ēi|2

2Āi

„
2 sin

θi − θ̄i

2

«2

,

which exactly corresponds to the geometric formulation (4).

4 Orthotropic Bending

We now generalize our bending model to orthotropic materials—
an important class of anisotropic materials whose elastic properties
depend on the direction along which they are measured [Ventsel
and Krauthammer 2001]. A fully general linear elasticity model for
deformable surfaces has six parameters (not counting the choice of
anisotropy axes) some of which are hard to interpret intuitively. We
focus on a more restricted orthotropic elasticity model whose four
parameters have more intuitive meaning and appear to be useful
for material behavior control in animation. Most common man-
made materials are orthotropic, for example, cloth, plastic rein-
forced by fibers, sheet metal, and paper. Non-orthotropic thin ma-
terials are less common (e.g., thin sheets obtained by cutting a 3D
orthotropic material at an angle, or composite materials). For cloth,
orthotropic approximation naturally matches most of the parame-
ters of the Kawabata cloth evaluation system [Kawabata 1980], a
commonly used system for characterizing cloth properties, as ex-
plained below.

We are primarily interested in how these material parameters af-
fect bending, rather than in-plane deformations. From the four pa-
rameters of orthotropic materials, one parameter can be eliminated
if we assume that bending the surface along material directions does
not have any effect on bending on the other direction (this corre-
sponds to having zero Poisson ratio in the isotropic case). For sim-
plicity we will assume that this is the case, and briefly discuss the
role of the Poisson ratio at the end of this section.

4Existence of this transformation is ensured by the isometry assumption.

The most obvious of the remaining three parameters are two
Young’s moduli, Y 0 and Y 1, which determine bending stiffness
along two material directions. The third parameter is the shear
modulus, G01, which, for in-plane deformations, determines the re-
sistance to shear. In the case of bending, the shear modulus allows
for additional directional variability of bending stiffness. Specifi-
cally, bending stiffness at an angle α with respect to the material
axis 0, is given by (up to a scale factor):

Y 0 cos4 α + Y 1 sin4 α + 2G01 sin2 α cos2 α . (17)

90

270

180 0

G01 = K
G01 = .01K

G01 = 2KConsider the adjacent plot
of directional stiffness as a
function of α, for three ma-
terials all sharing Y 0 =
Y 1, but with shear moduli
0.1K, K, and 2K. Note
that for low shear, typical for
cloth, the maximal to min-
imal bending stiffness ratio
is 2. As shown in Figure 9,
this has a significant effect
on drapability, and cannot be
achieved by a simple model
using just two parameters. Similarly, the shear modulus affects re-
sistance of cloth to twisting, even if Y 0 = Y 1, as twisting may lead
to diagonal bending.

Directional stiffness is particularly important in the case of
quasi-inextensible flat sheets. Such sheets have small Gaussian cur-
vature (the product of the two principal curvatures), which implies
that strong bending can be present only in a single direction.

In contrast to directional stiffness, forces arising from the inter-
action of multiple bending directions (e.g., due to the Poisson ratio
in the isotropic case) appear to be qualitatively less important. In
fact, one can show that for directional stiffness this interaction re-
sults in effective increase in the shear modulus. One can prove that
in the simple case of bending of a plate with fixed boundaries the
bending forces (unlike stretching) are independent of the Poisson
ratio.

The Kawabata system characterizes cloth by its resistance to
bending along warp and along weft directions, and by tensile, shear-
ing and compressive stiffnesses measured as functions of deforma-
tion. In the orthotropic elasticity model, stiffnesses are assumed
to be independent of the deformation, which appears to be a good
approximation for qualitative modeling. Furthermore, plasticity ef-
fects are ignored, and the compressive and tensile stiffnesses are
assumed to be equal. As pointed out in [Breen and Donald 1994],
linear elasticity provides a good approximation for Kawabata mea-
surements for small deformations, although it ignores some of the
subtler initial-resistance effects.

Given Kawabata measurements of a fabric, Y 1 and Y 0 can be
inferred from directional bending stiffnesses and tensile measure-
ments, and G01 from shear measurements. Alternatively, Y 1, Y 0,
G01, and the material axes may be directly controlled by an artist,
adjusting parameters based on the notion that Y 1 and Y 0 determine
resistance to bending along the two orthogonal material directions
and G01 determines the resistance of the material to draping over
an object.

Given the material parameters, and applying a standard for-
mulation of Hooke’s law for orthotropic materials, we can ex-
press the bending energy density of a deformed surface as a func-
tion of bending strain ε, using one additional material parameter
Y 01 = ν01Y

1 = ν10Y
0, where ν10 and ν01 are Poisson ratios

(which always satisfy ν01/Y 0 = ν10/Y 1). The energy density is

c
`
Y 0ε200 + Y 1ε211 + 2Y 01ε00ε11

´
+ 2hG01ε201 , (18)
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where c = hY 0Y 1/(Y 0Y 1 − Y 01Y 01), h = τ3/12, and τ is the
sheet thickness. The bending strain is the shape operator [do Carmo
1992] for surface, which for a quadratic bending energy reduces to
the matrix of second partial derivatives. For the special case of
isotropic materials, Y 0 = Y 1 = 2(1 + ν)G01 = Y 01/ν.

In the following section, we show that orthotropic effects can
be captured by weighting each hinge stiffness by a scalar factor,
λ̄i. We again offer two parallel views, a geometric and a finite
element one. For convenience of implementation, the results of this
derivation are summarized in §5.

4.1 Hinge-based Orthotropy

In §2.2 we discussed a simple model of discrete bending energy
for isotropic shells. We based this model on summing the contri-
butions of squared mean curvatures over interior edges. While dis-
crete mean curvatures suffice to cover the isotropic case, we must
use a discretization of the full shape operator in the anisotropic case.
Indeed, smooth anisotropic energy density (18) requires express-
ing the discrete shape operator as a symmetric 2 × 2 matrix in the
material frame—as the entries of this matrix measure bending and
shearing stiffness in principal material directions. A hinge-based
discrete shape operator S has been successfully applied in geomet-
ric modeling [Hildebrandt and Polthier 2004]. Here we augment
the geometric modeling view by three aspects: (a) we express S in
a material frame as opposed to its original expression in a principal
curvature frame, (b) we show how S leads to a scalar stiffness-
correcting factor per edge covering the discrete orthotropic case,
and (c) we offer a derivation of the discrete shape operator based
on non-conforming CR elements.

Geometric View We briefly recall the geometric view of dis-
crete shape operator based on discrete principal curvatures taken
in [Hildebrandt and Polthier 2004]. It is well-known from the
smooth case [do Carmo 1992] that S corresponds to a quadratic
form whose (orthogonal) eigenvectors correspond to the two prin-
cipal directions, and its eigenvalues correspond to the principal cur-
vatures, κ1 and κ2. In the discrete edge-based view, [Hildebrandt
and Polthier 2004] define principal directions as the two directions
along and perpendicular to a given edge, respectively. In this view,
there is no curvature along the edge (κ1 = 0). Consequently, in the
edge-based principal curvature frame, the discrete shape operator
takes the form

S =

„
0 0
0 H

«
,

where H = κ1 + κ2 denotes mean curvature. We note that this
hinge-based shape operator is mesh dependent (in particular, prin-
cipal directions are tied to edge directions). However, if the edge
directions are distributed evenly, the true shape operator is well ap-
proximated on average.

In order to express S in the material frame, we treat the mesh
area associated with each hinge stencil as a homogeneous piece of
material, i.e., we assume that the material parameters cY 0, cY 1,
cY 01, hG01, and the material axes are constant over hinge stencils.
Denoting by γ0 the angle between edge ei and the first material
axis, ŷa, and using the fact that the shape operator transforms like
a quadratic form, we obtain that S takes the form

Si = Hi

„
sin2 γ0 − sin γ0 cos γ0

− sin γ0 cos γ0 cos2 γ0

«
, (19)

when expressed in the material frame of the edge i. Finally, using
the smooth energy density (18) and setting ε = S, it follows from
basic trigonometric identities that the discrete orthotropic density
can be written as

„
(cY

0
) sin

4
γ0 + (cY

1
) cos

4
γ0 +

1

2

“
cY

01
+ hG

01
”

sin
2
(2γ0)

«
| {z }

λ̄i

·H2
i ,

providing a way to adjust hinge weights to effect orthotropic re-
sponse.

Finite Element View In §3.2 we discussed the derivation of the
edge-based mean curvature vector in terms of the CR finite ele-
ments. We now offer a derivation of the discrete shape operator
given by (19) in terms of the non-conforming elements.

In material frame coordinates, the representation of the shape
operator is given by the second directional derivatives,

∂2

∂ya∂yb
= (ŷa · ∇)(ŷb · ∇) ,

with a, b ∈ {0, 1}, applied to the immersion of the sur-
face [do Carmo 1992]. We require the CR discretization of these
operators. As for the case of mean curvature, the corresponding
weak form formulation is obtained by integration by parts. Using
that the material axes are assumed to be constant on hinges, we
obtain

−
Z

S

φi(ŷa · ∇)(ŷb · ∇)φj dA =

Z
S

(ŷa · ∇φi)(ŷb · ∇φj) dA .

Notice that this expression is in general not symmetric in a and b. In
order to match the smooth case, where partial derivatives with con-
stant coefficients commute, we symmetrize it, obtaining the stiff-
ness matrices, Kab, whose entries are given by

Kab
ij =

1

2

Z
S

(ŷa · ∇φi)(ŷb · ∇φj) + (ŷb · ∇φi)(ŷa · ∇φj)dA .

In perfect analogy to the mean curvature definition (10), we obtain
the discrete shape operator by

Sab = M−1 Kab Tx .

Notice that this expression is vector-valued, as was (10). Indeed,
S is precisely the vector-valued version of (19), i.e., Si = Sin̂i,
where n̂i is the angle-bisecting normal of the dihedral angle at the
edge.

This completes the requisite derivations for orthotropic cubic
shells. In the following, we discuss the implementation of our
model (§5) and demonstrate the generality of the model with vari-
ous simulation examples (§6).

5 Implementing the Discrete IBM

In this section we describe the computation of forces and force Ja-
cobians for the discrete bending energy (8). Consider a mesh with
n vertices and coordinate vectors xx,xy,xz ∈ Rn. Hinge-centric
computations are expressed in terms of the hinge’s local indices
(Fig. 2) for triangles, {T0, T1}, edge vectors, {e0, . . . , e4}, and
vertex positions, {x0, . . . ,x3}.

Precomputation Recall that quantities that depend only on the
undeformed positions are decorated with a bar, e.g., x̄. Compute
barred quantities once, before the simulation.

One-time Matrix Assembly Assemble the global n×n matrix,
Q̄, by iterating over hinge stencils. In the usual style of stiffness
matrix assembly [Zienkiewicz and Taylor 1989], Q̄ accumulates
contributions from each local 4× 4 matrix, Q̄i:

Q̄i =

„
3λ̄i

Āi

«
K̄T

i K̄i ,
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Figure 3: Deformations are primarily characterized by the ratio of bending to membrane stiffness. Despite having forces linear in positions,
the quadratic bending model is valid over a broad range of stiffness values. Shown here (left to right): 10−5 : 1, 10−3 : 1, and 10−2 : 1.

where λ̄i is the stiffness of the hinge and Āi is the combined
area of the two hinge triangles, In local indices, we have K̄ =
(c̄03 + c̄04, c̄01 + c̄02,−c̄01 − c̄03,−c̄02 − c̄04) ∈ R4, where
c̄jk = cot ∠(ēj , ēk).

Force Computation Compute forces by adding thin plate and
(if dealing with shells) nonflat contributions. Compute thin plate
contributions globally as the matrix-vector products fx = Q̄xx,
fy = Q̄xy , fz = Q̄xz . Compute nonflat contributions by accumu-
lating local hinge contributions

f0 = −f1 − f2 − f3 , f1 = k̄(e1 × e2) ,

f2 = k̄(e2 × e0) , f3 = k̄(e0 × e1) ,

where k̄ = 3λ̄i(c̄01 − c̄03)(c̄04 − c̄02)[ē0, ē1, ē2]/(Ā0|ē0|3).

Force Jacobian Computation The exact force Jacobian
(R3n × R3n) is obtained by adding the thin plate and (in the case
of shells) the nonflat contributions. The thin plate contributions are
given by ∂fx/∂xx = ∂fy/∂xy = ∂fz/∂xz = Q̄. For best per-
formance (without sacrifice of accuracy), the nonflat contribution
is omitted (as explained in §6); for completeness of exposition the
nonflat contribution is detailed in the Appendix A.

Orthotropic Hinge The simple expressions above are all that is
required to implement a cubic hinge-based bending force, given a
stiffness value λ̄i per hinge. For homogeneous isotropic materials,
λ̄i = λ̄ does not vary over the mesh, and the above derivation suf-
fices; if a general class of orthotropic materials is desired, then λ̄i

should be computed by the formula derived in (§4.1); recall λ̄i =

(cY 0) sin4 γ0 + (cY 1) cos4 γ0 +
1

2

`
cY 01 + hG01´ sin2(2γ0) ,

where γ0 is the angle between the hinge edge and the first material
axis, ŷ0, and Y 0, Y 1, Y 01, and G01 are the material parameters
described above. The above expression is all that is needed to im-
plement orthotropic bending for cubic shells, and indeed for any
existing hinge-based model.

In our implementation, the (spatially-varying) direction of ŷ0 is
encoded by a coordinate function over a given parameterization of
the surface. In particular, we use the color values of a texture map
to encode the direction of the material axis.

6 Efficient Plate & Shell Dynamics

Whether in the high-fidelity or interactive setting, rapid simulation
requires an efficient numerical integrator for second order initial

value problems (IVPs) of the form

M ẍ(t) = f(t,x(t), ẋ(t)) , (20)

where M is the (physical) mass matrix; f(t,x(t), ẋ(t)) are forces
depending on time, position, and velocity; and the initial position
and velocity of the cloth are prescribed [Hauth 2004]. For analysis
one often introduces velocity as a separate variable, rewriting the
above as a coupled first-order system,„

Id 0
0 M

«„
ẋ(t)
v̇(t)

«
=

„
v(t)

f(t,x(t),v(t))

«
,

with appropriate initial conditions. The temporal discretization of
this system is a well-studied and active area of applied mathemat-
ics and computational mechanics, with a host of attendant meth-
ods. For treatments tailored to cloth simulation we refer the reader
to [Baraff and Witkin 1998; Etzmuss et al. 2000; Hauth and Etz-
muss 2001; Choi and Ko 2002; Ascher and Boxerman 2003; Brid-
son et al. 2003; Hauth et al. 2003; Boxerman and Ascher 2004;
Hauth 2004]).

As a general observation, each force may be treated explic-
itly or implicitly. An explicit treatment requires the (possibly re-
peated) evaluation of the force per discrete time step; an implicit
method requires additionally the (possibly repeated) evaluation of
the force Jacobian per discrete time step. In the case of a conserva-
tive force, such as elastic bending, the force Jacobian is minus the
energy Hessian. In the case of a dissipative Rayleigh force, such
as damping of the bending modes, the Jacobian is expressed as a
linear combination of the physical mass and energy Hessian. Et-
zmuss, Hauth et al. [2000; 2001; 2003; 2004] as well as Ascher
and Boxerman [2003; 2004] analyzed the behavior of time integra-
tion schemes and presented arguments for the adoption of implicit-
explicit (IMEX) integrators; Bridson et al. [2003] presented a semi-
implicit method that treats damping implicitly and elastic forces ex-
plicitly. Our results indicate that IBM accelerates both explicit or
implicit treatments of bending.

Among common discrete time-stepping schemes [Baraff and
Witkin 1998; Hauth 2004; Hairer et al. 2006], implicit schemes
are popular in animation due to their stability. Implicit schemes
advance time by solving a (typically nonlinear) system of equa-
tions. The system is usually solved by repeated Newton iterations
(although semi-implicit methods complete a single Newton itera-
tion) [Press et al. 1992]. Each Newton iteration requires an evalua-
tion of the force, −∇E, as well as the force Jacobian.

Inexact Newton’s Method The thin plate case (§6.1) is dis-
tinguished by the property that the force Jacobian is constant, and
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Draping problem regular mesh (resolution, in no. vertices) irregular mesh (resolution, in no. vertices)
400 1600 6400 25600 450 2100 6500 22500

Gradient nonlinear hinge 0.937 3.45 16.4 66.6 1.10 5.43 17.6 67.8
cost (ms) quadratic IBM 0.081 0.338 2.19 9.15 0.098 0.494 2.32 9.68
Hessian nonlinear hinge 12.8 54.2 218    890. 15.2 77.2 246    888    
cost (ms) quadratic IBM 0.237 0.963 3.87 15.7 0.266 1.28 3.99 13.6
Explicit step nonlinear hinge 3.81 6.64 27.5 112. 2.16 9.53 31.4 140.
cost (ms) quadratic IBM 2.63 2.90 11.9 48.8 0.964 4.35 15.2 76.5
Implicit step nonlinear hinge 28.6 138    470. 1730    33.9 219    557    1880    
cost (ms) quadratic IBM 11.0 62.7 168    505    13.6 103    219    612    

Flag problem regular mesh (resolution, in no. vertices) irregular mesh (resolution, in no. vertices)
400 1600 6400 25600 450 2100 6500 22500

Gradient nonlinear hinge 0.975 3.99 16.0 64.0 1.10 5.43 17.8 68.7
cost (ms) quadratic IBM 0.085 0.341 2.14 8.75 0.099 0.490 2.31 9.28
Hessian nonlinear hinge 13.4 54.8 212    849    15.2 77.4 247    887    
cost (ms) quadratic IBM 0.251 0.974 3.79 14.99 0.267 1.30 3.96 13.7
Explicit step nonlinear hinge 1.73 7.05 27.7 112. 1.97 9.80 32.7 134    
cost (ms) quadratic IBM 0.780 3.26 13.3 53.4 0.900 4.54 16.1 70.0
Implicit step nonlinear hinge 27.6 106    420. 1680    33.5 155    513    1880    
cost (ms) quadratic IBM 9.53 32.9 127    490    12.5 50.4 166    608    

Table 1: Computational cost per time step for a variety of regular- and irregular-mesh resolutions, comparing our quadratic energy to the
popular nonlinear hinge energy. Costs reported include the time required for collision detection and response. These tests were conducted on
a single process, Pentium D 3.4GHz, 2GB RAM.

can be pre-computed once (see §5). In the cubic shells case (§6.2),
however, the force Jacobian is no longer constant. Here the follow-
ing observation comes to the rescue. Consider Newton’s method,
applied to an implicit time-stepping scheme,

G(xk+1) = xk+1 − xk − hf(xk+1) = 0 .

The fixed points of this method remain unaltered when the Jaco-
bian, J = ∇G, is replaced by any invertible matrix, J̃ ≈ J.
This observation justifies the inexact Newton’s method: Instead of a
costly J, use any good but efficient approximation J̃ [Morini 1999].
Approximating the Jacobian may affect (the rate or radius of) con-
vergence, but it will not affect the limit value of converging itera-
tions. In contrast, approximating G will affect the value of the fixed
points; therefore, inexact Newton approximates only the Jacobian
∇G, not the function G. The isometric deformation assumption
gives the constant approximant, J̃, to the flow Jacobian, J, where

J = Id− h Hess(Eb)(x) ≈ Id− h Q̄ = J̃ ,

where Q̄ is the constant matrix computed in §5.
Hauth [Hauth 2004] used an approximation of the in-plane

stretching force Jacobian, and an inexact Newton framework, to
accelerate cloth simulations; our work is similar, but we approxi-
mate the bending Jacobian. We will revisit the inexact Newton’s
method in §7, where it enables an acceleration of Willmore-type
fairing applications.

6.1 Thin Plates

We compare the computational cost and visual quality of the iso-
metric bending model to the widely-used bending hinge-based en-
ergy described in [Baraff and Witkin 1998; Bridson et al. 2003;
Grinspun et al. 2003], for regular- and irregular-meshes ranging
from 400 to 25600 vertices, on a draping problem as well as a dy-
namic billowing flag. Figures 1-4 provide a qualitative point of
comparison between IBM and the nonlinear hinge model.

Implementing our discrete IBM for thin plates is straightforward,
as explained in §5. In contrast, an efficient implementation of a
nonlinear model such as a hinge spring requires both significant
(human and computer) gradient calculations, or leads to adoption of
costly automatic-differentiation techniques [Grinspun et al. 2003].
For comparison of computational efficiency, our implementation of

Figure 4: Final rest state of a cloth draped over a sphere, for
(left) the proposed isometric bending model and (right) the widely-
adopted nonlinear hinge model.

the hinge forces and Jacobians was hand tuned and not based on
automated methods.

Replacing the nonlinear hinge model with the quadratic IBM
reduces bending force computation cost by seven- to eleven-fold.
Where a force Jacobian is required, IBM’s constant Hessian is pre-
computed once and stored in a sparse matrix datastructure, elim-
inating the computational cost of bending Jacobian assembly. Of
course, the actual net performance improvement in any given ap-
plication depends on the fraction of total computation associated to
bending.

Test Setup To estimate this, we implemented both the implicit
solver framework of [Baraff and Witkin 1998] as well as a simple
explicit Euler solver. Our choice of solvers is motivated by a de-
sire to estimate profitability of incorporating IBM whether or not a
framework requires bending force Jacobians. The test framework
incorporates: (a) the usual constant strain linear finite element for
membrane response [Zienkiewicz and Taylor 1989; Hughes 1987],
which computationally is at least as costly as the membrane model
proposed in [Baraff and Witkin 1998]; (b) the robust collision de-
tection and response methods of [Bridson et al. 2002], augmented
with k-DOP trees [Klosowski et al. 1998]; (c) the PETSc solver
library [Balay et al. 2001]. Further optimization of our collision
detection using [Govindaraju et al. 2005] is likely to reduce the
overhead of collision computations for large meshes. For a more
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Mesh Resolution
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Figure 5: (Left:) Performance measured in completed simulation time per CPU second (y-axes) as a function of discrete time step (x-axes).
Higher values mean better performance. In an inexact Newton framework, Cubic Shells dominate performance for all tested scenarios,
including (left-to-right) Orthotropic Flags (Fig. 10), Falling Cylinders (Fig. 8), and Falling Bowl (Fig. 12). Right: Performance as a function
of mesh resolution (from 10 × 10 to 160 × 160 regular grids), demonstrating that the benefits of cubic shells are not resolution-dependent.
Timing numbers include timestepping and collision detection/response.

detailed comparison, see Table 1. We observe a consistent reduc-
tion in total computational cost compared to the nonlinear hinge
model, across the two problem setups, two mesh types, and resolu-
tions ranging from 400 to 25600 vertices.

Draping Cloth We simulated the draping of a square sheet over
a sphere. As shown in Figure 4, the draped cloths are qualita-
tively similar in their configuration and distribution of wrinkles
and folds. Since only the final draped state was important, we
introduced a dissipative Rayleigh force allowing for larger time
steps [Hughes 1987]. For this example we might also consider a
quasistatic method, as recently considered in [Teran et al. 2005].
Since quasistatics requires repeated evaluation of forces and their
Jacobian, the proposed bending model will also be profitable in the
quasitatic setting. Together Figures 4-3 capture the behaviour of
IBM under a range of bending stiffnesses.

Billowing Flag We simulated the dynamics of a flag under wind.
As shown in the accompanying movie (see also Fig. 1) the motion
of the flag is qualitatively unaffected when we substitute the more
economical quadratic bending energy. Furthermore, we found that
there is no need to readjust material parameters when switching
from the nonlinear hinge to the IBM model; this is not unexpected
in light of the link between the two energies, as discussed in Foot-
note 2. We modeled wind by a constant homogeneous velocity
field, with force proportional to the projection of the wind veloc-
ity onto the area-weighted surface-normal. For more sophisticated
effects of wind fields on cloth see [Keckeisen et al. 2004]. Purely
for contrast with the draping example, we did not introduce any spe-
cific damping forces, although the implicit Euler method is known
to exhibit numerical damping.

IMEX Methods We stress that the proposed model is not spe-
cialized to our test framework. Consider for example the in-
tegration of the IBM into the framework described by Bridson
et al. [2003], which treats elastic (position-dependent, velocity-
independent) forces explicitly, and treats damping forces implic-
itly. With IBM both force and Jacobian computation is greatly
reduced; therefore explicit, implicit, and semi-implicit treatments
are all prime candidates. Bridson et al. describe a very efficient
matrix-free solver strategy, involving as few as one to two conju-
gate gradient iterations: this heightens the relevance of fast (elastic
and damping) bending force computations, since with fewer conju-
gate gradient iterations, the balance of computation shifts further to
the computation of the cached nonlinear position-dependent terms
as well as the algebraic system’s right hand side. In incorporating
IBM in this context, the requisite matrix-vector multiplication may
be distributed, (Km + Kb)~x = Km~x + Kb~x, where the precom-
puted Kb is a multiple of the constant bending Jacobian, and Km

is the membrane Jacobian.

6.2 Thin Shells

The separability of the force Jacobian (see §5) of our cubic bending
model into a constant and linear term, combined with an inexact
Newton’s method, opens several interesting possibilities for effi-
cient time integration of thin shell dynamics.

Experiment We consider the application of the inexact New-
ton’s method with approximations to the bending force Jacobian.
To provide a standard and easily-reproducible point of reference,
we consider the Euler method, fully-implicit on stretching and
bending elastic forces, without any additional damping forces.

In our experiments we pair two possible bending forces with
three possible force Jacobians. For the two forces we con-
sider the nonlinear hinge (NH)—the force resulting from treating
bending energy fully nonlinearly (i.e., by dropping the isometry
assumption)—and the cubic shells force (CS) arising from our cubic
energy as discussed in the previous section. For the three force Ja-
cobians we consider the nonlinear hinge Jacobian (NH), the entire
cubic shells Jacobian (CS), and the constant part (CC) of the cubic
shells Jacobian. A particular choice of (inexact) Newton is denoted
by a 2-tuple, e.g., (CS,CC) denotes the use of the cubic shell bend-
ing forces paired with an approximate constant Jacobian; (NH,NH)
denotes the usual fully-implicit implementation of the nonlinear
hinge.

As a baseline, we run (NH,NH) at the maximum stable step size,
and four smaller step sizes; these step sizes are reused in runs of
(NH, CS), (NH, CC), (CS, CS), (CS, CC). We measure performance
of these runs for various problem scenarios (see §6.3).

We record the performance of each method, measured as the ra-
tio completed simulation time per CPU second, i.e., higher values
mean better performance (see Figure 5–left). The cubic shells with
an approximate constant Jacobian, (CS,CC), dominates all meth-
ods for all problem scenarios. Note that the performance gains ob-
served for (CS, CC) are independent of mesh resolution (see Fig-
ure 5–right).

6.3 Visual Impact of Orthotropic Effects

Orthotropic parameters provide additional artistic control over the
dynamics of wrinkles and folds. Consider for example a flag tai-
lored by cutting a rectangular pattern from an orthotropic textile.
The orientation of warp and weft relative to the flag’s pattern, as
well as the values of Young’s and shear moduli, have considerable
visual impact on the resulting dynamics (see Fig. 10).

The orthotropic shear modulus plays an important role in the
drapability of a fabric [Sidabraite and Masteikaite 2002]; the shear
modulus is not captured by geometric models that employ Euler’s
formula, such as [Baraff and Witkin 1998; Volino and Magnenat-
Thalmann 2006], or elliptic interpolation, such as [Choi and Ko
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Figure 6: Initial and final frames of Willmore flow applied to
smooth (top) a 44928 triangle dinosaur and (bottom) a 24192 tri-
angle hand at interactive rates. 16 smoothing steps require a total
of 7.47s and 4.42s, with one-time factorization costing 8.77s and
5.31s, for the dinosaur and the hand, respectively. Images rendered
with flat shading.

2003]. A high shear modulus tends to align folds and wrinkles to
the material axes; a lower shear modulus allows the fabric to fold
along other directions, and therefore to obtain a closer fit to the
body. The first two frames of Fig. 9 compare a high and low shear
modulus, respectively, illustrating the intuitive notion of drapabil-
ity. When a high shear modulus is desired (leftmost frame), the
Young’s modulus is a poor substitute—it is unable to capture stiff
extrusion of the poncho around the shoulders without introducing
extraneous stiffness elsewhere.

Furthermore, orthotropy has a strong effect on the interaction
between a material and its environment. We simulate the fall and
bounce of four elastic cylinders, each with a different orientation
for its principal material axis. The resulting animation (Fig. 8) re-
veals the extreme variations in deformation and overall trajectory
that arise purely from changing the orthotropic parameters.

Orthotropy indirectly enriches any other technologies imple-
mented in the simulator, such as viscoelasticity or fracture [Ter-
zopoulos and Fleischer 1988]. For example, the anisotropic bend-
ing resulting from collisions produces distinctive fracture patterns
both for plates (Fig. 11) and shells (Fig. 12). For a summary of the
fracture algorithm refer to Appendix B.

6.4 Sensitivity to the Inextensibility Assumption

Implicit to the IBM is the assumption that the surface deforms iso-
metrically, i.e., without stretching. A natural question, then, is how
much stretching is permissible in practice, and what are the failure
modes of the model under excessive stretching? To explore these
questions, we re-simulate the falling cylinder and falling bowl us-
ing progressively lower stretching resistance. Both examples re-
main well-behaved so long as the stretching stiffness is two orders
of magnitude greater than the bending stiffness; during the simula-
tion, the meshes stretch by as much as 15%.

If we reduce stretching stiffness even further, then for the thin
shell examples we observe a slow, noticeable stretching of the sur-
face, in particular, in an expanding (not oscillatory) mode. This is
perhaps not surprising, since a cubic energy is not bounded from

Figure 7: Initial and final frames of Willmore flow applied to solve
two tasks posed by Bobenko and Schröder. (top) Smoothing a 4-
times subdivided icosahedron into a sphere and (bottom) a hole fill-
ing problem. The sphere converged in 120ms (12ms × 10 smooth-
ing steps), with 200ms for Hessian prefactorization. The hole fill-
ing problem required 640ms after 120ms for prefactorization. Ren-
dered with flat shading.

below; under normal (quasi-isometric) circumstances, the stretch-
ing resistance prevents this infinite well from being exploited.

We repeat the above experiment with the billowing flag. Since
the flag has a flat undeformed configuration, the cubic energy term
vanishes, leaving a quadratic energy bounded from below. We ob-
serve that the flag simulation is well-behaved even when strong
wind induces stretching of 300%.

7 Geometric Modeling

The Willmore energy of a surface is given as

EW (x) =

Z
S

(H2 −K) dA =
1

4

Z
S

(κ1 − κ2)
2 dA .

As noted in [Bobenko et al. 2005], immersions that minimize Will-
more energy are of interest in a range of areas, including the study
of conformal geometry [Blascke 1929; Willmore 2000], physical
modeling of fluid membranes [Canham 1970; Helfrich 1973], and
our focus in this example, geometric modeling. For surfaces with-
out boundary and surfaces whose boundary is fixed up to first order,
the Willmore functional is variationally equivalent to the thin plate
(H̄ = 0) version of the functional (1). The corresponding geomet-
ric flow

ẋ = −∇Eb(x),

has spurred many applications for surface fairing and surface
restoration [Bobenko et al. 2005; Clarenz et al. 2004; Schneider and
Kobbelt 2001; Yoshizawa and Belyaev 2002]: Hole-filling applica-
tions (see Figure 7-bottom) integrate the flow to its stationary limit
(when such a limit exists). Smoothing applications (see Figures 6
& 7-top) integrate the flow over a prescribed duration, with longer
integration times smoothing progressively coarser spatial frequen-
cies.
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Implementations of discrete Willmore flow were reported by sev-
eral authors. Ken Brakke’s Surface Evolver [Brakke 1992; Hsu
et al. 1992] used a discretized version of mean curvature as a build-
ing block for Willmore energy. Yoshizawa et al. [Yoshizawa and
Belyaev 2002] discretized directly the energy gradient, using the
cotangent formula. The latter introduced an additional tangential
force to improve the quality of the evolving mesh. Clarenz et
al. [Clarenz et al. 2004] discretized the variation of the Willmore
energy in terms of linear Lagrange elements and treated the corre-
sponding L2-flow by a coupled system of second order equations.
Finally, Bobenko et al. [Bobenko et al. 2005] presented a discrete
version of the fact that the integrand of the smooth Willmore energy
is conformally invariant. However, existing approaches did not fo-
cus on the economy that arises from assuming (or rather pretending)
that deformations are isometric.

To compute a geometric flow, one must integrate the flow trajec-
tory over time. This may be achieved via explicit or implicit meth-
ods, as described in §6. Following the direction laid out by Desbrun
and coworkers [Desbrun et al. 1999], who note that the stability of
implicit integration methods improves the performance of geomet-
ric flows, we implemented an implicit method, in particular using
the inexact Newton’s method.

Discrete IBM in Willmore Solver In contrast to our treatment
of cloth and inextensible thin plates, in applications of Willmore
energy the presence of an accompanying isometry-enforcing term
is notably absent. Indeed, the deformations governed by Willmore
flow are generally not isometric so that the energy gradient will
not be linear, as it was for cloth. It may therefore seem surprising
that our proposed Willmore flow application, while incorporating
an isometry assumption, gains speed without paying in visual qual-
ity. The inexact Newton Method serves as the numerical framework
in which this phenomenon can explained.

Using the PETSc [Balay et al. 1996] and PARDISO [Schenk and
Gärtner 2004] solver libraries, we implemented the backward Eu-
ler method with an inexact Newton solver. We found that a semi-
implicit treatment, which stops Newton’s method after one itera-
tion, exhibits the best trade-off between stable time step size and
cost per time step, for a prescribed level of accuracy.

We briefly discuss the details that led to efficient Newton itera-
tions. To make clear the structure of the linear solve, we write the
Newton iteration as

(∇G)(x
(i+1)
k+1 − x

(i)
k+1) = −G(x

(i)
k+1) .

For the right hand side, we compute the full nonlinear expres-
sion ∇Eb(x); consult Appendix C for a derivation. For the left
hand side, we replace ∇G by the constant precomputed ma-
trix Q̄ (see §5). We used PARDISO’s LLT solver, which fac-
tors Q̄ symbolically and numerically. Since Q̄ is known at pro-
gram start, the symbolic factorization step—the bulk of the linear
solver’s computation—can be executed just once at startup. The
pre-factorization of Q̄, and the elimination of repeated matrix as-
sembly, accounts for the speedup we observed.

Results To evaluate the performance of our method, we du-
plicated several problem scenarios presented by Bobenko et
al. [Bobenko et al. 2005] (see Figures 6 & 7). Whereas Bobenko’s
work preserves the Möbius symmetries of the underlying continu-
ous system, our focus is on rapid computation at nearly interactive
rates, maintaining good surface quality, while retaining invariance
under a subset of all Möbius transformations: rigid transformations
and uniform scaling.

Figure 7-bottom shows the result of a six-sided hole filling prob-
lem (compare with [Bobenko et al. 2005]). In this problem setup,
the boundary conditions are taken from a smooth Loop subdivision
surface, and the interior triangles are initialized with a trivial non-
smooth solution. We fix two rings of vertices to enforce the pre-

scribed boundary conditions up to first order, and integrate the geo-
metric flow until it reaches a stationary point. The solution required
760ms, which includes 120ms for Jacobian pre-factorization.

Due to its constant, pre-factored Jacobian, our method scales
well to larger meshes. We applied Willmore flow to smooth sev-
eral large meshes, including the dinosaur (45k triangles) and hand
(24k triangles), shown in Figure 6. Unlike Laplacian smoothing,
for which fast implicit methods have been demonstrated [Desbrun
et al. 1999], Willmore flow is derived from a scale-invariant energy,
hence it is not biased toward shrinking the surface. The inexact
Newton’s method enabled us to accelerate computation by several
orders of magnitude. The near-interactive times are reported using a
notebook computer, suggesting that fully-interactive Willmore flow
for large meshes is well within the reach of the discrete IBM.

8 Discussion

Limitations The IBM does not overcome those limitations that
are shared by all hinge-based approaches. In particular, the simplic-
ity of hinge-based models comes at the cost of limited convergence
behavior and meshing-dependence [Grinspun et al. 2006]. Beyond
those limitations inherited from the general class of hinge-based
methods, the approach here is built on the assumption of inextensi-
bility. We performed a cursory evaluation of the sensitivity of the
method to violations of this assumption (recall §6.4); a more rigor-
ous evaluation is required to complete the picture.

Conserved Momenta In all circumstances, and in particular
even when parasitic stretching is observed due to a broken isometry
assumption, the simulated model conserves linear and angular mo-
menta. To see this, note that the quadratic forces arising from the
cubic energy are not approximated (only their Jacobian is); since
the cubic energy is invariant under rigid body transformations of
the deformed (and also the undeformed) configuration, forces in-
duced by this energy do not apply a global acceleration or torque.

Who Should Use This Method? In any practical application,
the final decision on incorporating a proposed technique hinges on
the implementation cost and performance benefit of the method.
We have presented a model for bending that involves simply com-
puting the entries of a sparse matrix. This computation is straight-
forward, as shown in §6. Finally, incorporation of the proposed
model is a minimally-invasive task. Given these considerations, we
suggest that it will be straightforward to evaluate the efficacy of
the proposed model within the reader’s preferred cloth simulation
framework.

Shortly after the work described in this chapter was completed,
Goldenthal et al. [2007] proposed a fast projection method for en-
forcing inextensibility of a quadrilateral surface mesh. Building
on this, English and Bridson [2008] observed that fast projection
could be applied to enforce inextensibility of triangle meshes, by
constraining the edge lengths of the dual-mesh; one interpretation
is that the discontinuous surface given by the Crouzeix-Raviart el-
ements deforms isometrically. This view illuminates the natural
connection between the projection used to enforce inextensibility,
and the IBM forces described in this chapter. English and Bridson
observe this connection when they select the IBM as the simple,
natural choice of bending model for the simulation of developable
triangle meshes.
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Appendix A

Neglected Term in Force Jacobian As discussed in §6, we
advocate the use of an inexact Newton’s method, using only the
constant portion of the force Jacobian given in §5. Indeed, for opti-
mal performance (and no loss of accuracy) one should omit calcu-
lation of the linear component arising from the nonflat undeformed
configuration. However, for completeness of presentation, we in-
clude the expression for this linear component below.

With respect to the local position vector (x0,x1,x2,x3) ∈ R12,
and the corresponding local force vector f = (f0, f1, f2, f3) ∈ R12,
the local force Jacobian (R12 × R12) is given by

k̄

0B@ 0 (e1 − e2)
∗ (e2 − e0)

∗ (e0 − e1)
∗

−(e1 − e2)
∗ 0 −e∗2 e∗1

−(e2 − e0)
∗ e∗2 0 −e∗0

−(e0 − e1)
∗ −e∗1 e∗0 0

1CA ,

where each entry represents a 3× 3 skew-symmetric subblock; the
asterisk applied to a vector, v∗, produces the matrix

v∗ =

0@ 0 −vz vy

vz 0 −vx

−vy vx 0

1A ,

corresponding to the cross product operation v × (·). The lo-
cal force Jacobian is assembled into the global R3n × R3n Jaco-
bian in the usual manner. While it is most easily expressed by
a skew-symmetric matrix of skew-symmetric subblocks, note that
Hess G(e0) is indeed symmetric.

Appendix B

Implementing Fracture The material fractures when internal
strain exceeds a threshold. For simplicity we only consider fracture
along existing mesh edges; however, this limitation can be easily
removed, see e.g., [O’Brien and Hodgins 1999; Molino et al. 2004;
Gingold et al. 2004]. A hinge edge, ei, fractures if the bending
strain, |ei|

Āi
(θi − θ̄i), exceeds a material-dependent threshold.

Fracture may be viewed as the transition when an interior edge
becomes a boundary edge. A mesh edge has one of three states:
INTERIOR→FRACTURED-INTERIOR→BOUNDARY, where the ar-
rows indicate allowable state transitions. An INTERIOR edge be-
comes FRACTURED-INTERIOR if the strain threshold is exceeded;
a FRACTURED-INTERIOR edge becomes BOUNDARY only as a con-
sequence of explicit changes to mesh connectivity, as explained be-
low.

A BOUNDARY vertex is a vertex incident on a FRACTURED-
INTERIOR or BOUNDARY edge. A FRACTURED-INTERIOR edge,
ei, may be in one of three configurations, distinguished by the num-
ber of incident BOUNDARY vertices:

ei ei ei

B0 B1 B2

In each case, any BOUNDARY vertices incident on ei are split into
two. Specifically, in case: (B0), no action is taken; (B1) and (B2),
one and two vertices are split, respectively, and the resulting change
to mesh connectivity causes at least one edge (ei) but possibly other
incident edges to transition FRACTURED-INTERIOR→BOUNDARY.

Appendix C

Fully Nonlinear Thin Plate Forces In the thin plate case, we
derive fully non-linear forces, as they are required in our Willmore

flow framework. To compute these forces, we drop the assump-
tion of isometric deformations and allow for arbitrary variations of
vertices. According to Equation (5), we can write the thin plate
bending energy as a sum over contributions from individual edges,
where

Eb(x)i =
3|ei|2

Ai
(1− cos(θi)) .

Here Ai denotes the combined area of the two triangles meeting at
edge ei, and θi is ei’s dihedral angle. With regards to Figure 2,
we focus on the edge e0 and its hinge stencil, consisting of the two
triangles meeting at e0. We shall drop the subscript 0 wherever this
causes no confusion. The non-linear forces arising from edge e0

with respect to variations associated with vertex xi are

fnl
i = 3(1− cos θ)∇xi

„
|e0|2

A0

«
| {z }

fP
i

+
3|e0|2

A0
sin θ∇xiθ| {z }
fB
i

.

Notice that we decompose the force fnl
i into a sum of two parts—

a component fP
i , corresponding to in-plane deformations, and an-

other component, fB
i , corresponding to pure bending modes. We

now provide closed expression for these components.
For the nonlinear bending forces, it has been shown [Wardetzky

et al. 2007] that

∇x0θ =
−1

|e0|

“
cot α03 n(0) + cot α04 n(1)

”
,

∇x1θ =
−1

|e0|

“
cot α01 n(0) + cot α02 n(1)

”
,

∇x2θ =
1

|e0|
(cot α01 + cot α03)n

(0) =
|e0|

2A(T0)
n(0) ,

∇x3θ =
1

|e0|
(cot α02 + cot α04)n

(1) =
|e0|

2A(T1)
n(1) ,

where A(Ti) denotes the area of triangle Ti. We note that the above
formulas for ∇θ are well-known in the literature, see e.g., the work
of Bridson et al. [2003]; indeed, they can be derived from the fact
that ∇θ causes no in-plane stretching and is orthogonal to all rigid
body modes. This completes our derivation of fB . The final step of
the derivation [Wardetzky et al. 2007] yields the nonlinear in-plane
forces

∇x0

„
|e0|2

A0

«
=

−2

A0
e0 +

|e0|2

2A2
0

(t3 + t4) ,

∇x1

„
|e0|2

A0

«
=

2

A0
e0 +

|e0|2

2A2
0

(t1 + t2) ,

∇x2

„
|e0|2

A0

«
=

|e0|2

2A2
0

t
(0)
0 ,

∇x3

„
|e0|2

A0

«
=

|e0|2

2A2
0

t
(1)
0 .

References
ASCHER, U. M., AND BOXERMAN, E. 2003. On the modified

conjugate gradient method in cloth simulation. Visual Computer
19, 7-8, 526–531.

BALAY, S., GROPP, W. D., MCINNES, L. C., AND SMITH, B. F.
1996. PETSc 2.0 users manual. Tech. rep., Argonne National
Laboratory.

Discrete Differential Geometry: An Applied Introduction (Desbrun, Grinspun, Schröder, Wardetzky) SIGGRAPH Asia 2008

30



BALAY, S., BUSCHELMAN, K., GROPP, W. D., KAUSHIK, D.,
KNEPLEY, M., MCINNES, L. C., SMITH, B. F., AND ZHANG,
H. 2001. PETSc homepage. http://www.mcs.anl.gov/petsc.

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simula-
tion. In SIGGRAPH, ACM Press, 43–54.

BERGOU, M., WARDETZKY, M., HARMON, D., ZORIN, D., AND
GRINSPUN, E. 2006. A Quadratic Bending Model for Inexten-
sible Surfaces. In Siggraph/Eurographics Sympos. Geom. Pro-
cessing, 227–230.

BLASCKE, W. 1929. Vorlesungen über Differentialgeometrie.
Springer.
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P. 2003. Discrete shells. SCA, 62–67.

GRINSPUN, E., GINGOLD, Y., REISMAN, J., AND ZORIN, D.
2006. Computing discrete shape operators on general meshes.
Comput. Graph. Forum 25, 3.

HAIRER, E., LUBICH, C., AND WANNER, G. 2006. Geomet-
ric Numerical Integration: Structure-Preserving Algorithms for
Ordinary Differential Equations. Springer.

HAUTH, M., AND ETZMUSS, O. 2001. A high performance solver
for the animation of deformable objects using advanced numeri-
cal methods. Computer Graphics Forum 20, 3, 319–328.

HAUTH, M., ETZMUSS, O., AND STRASSER, W. 2003. Analysis
of numerical methods for the simulation of deformable models.
Visual Computer 19, 7-8, 581–600.

HAUTH, M. 2004. Visual Simulation of Deformable Models. PhD
thesis, University of Tübingen.
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Figure 8: Thin-shell simulation of falling orthotropic cylinders. Material axes vary from left-to-right: isotropic, vertical, horizontal, diagonal.
Left Image: stress formed on the cylinders upon impact. Right Image: the effects of anisotropy after impact. Note the extreme flatenning of
the cylinder with axis aligned vertically and the high bounce of the cylinder with axis aligned horizontally.

Y 0 = Y 1 = 0.01, G01 = 100 Y 0 = Y 1 = 0.01, G01 = 0 Y = 0.2 Y = 0.35 Y = 0.5

Figure 9: Shear vs. no bending shear: a high bending shear modulus tends to align folds and wrinkles to the material axes (leftmost); a lower
shear modulus allows the fabric to fold along other directions, and therefore to obtain a closer fit to the body (second frame). Shearing effects
cannot be reproduced by simply tuning Young moduli (3 unsuccessful attempts shown on the right).

Figure 10: Varying material axes at no additional cost. From left-to-right: isotropic, vertical, horizontal and diagonal.

Figure 11: Thin plates: adjustable directions of fracture patterns. Left-to-right: isotropic, vertical, horizontal and diagonal.

Figure 12: Thin shells: adjustable directions of fracture patterns. Left-to-right: isotropic, vertical, horizontal and diagonal.
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Figure 1: Experiment and simulation: A simple (trefoil) knot tied on an elastic rope can be turned into a number of fascinating shapes
when twisted. Starting with a twist-free knot (left), we observe both continuous and discontinuous changes in the shape, for both directions
of twist. Using our model of Discrete Elastic Rods, we are able to reproduce experiments with high accuracy.

Abstract

We present a discrete treatment of adapted framed curves, paral-
lel transport, and holonomy, thus establishing the language for a
discrete geometric model of thin flexible rods with arbitrary cross
section and undeformed configuration. Our approach differs from
existing simulation techniques in the graphics and mechanics lit-
erature both in the kinematic description—we represent the mate-
rial frame by its angular deviation from the natural Bishop frame—
as well as in the dynamical treatment—we treat the centerline as
dynamic and the material frame as quasistatic. Additionally, we
describe a manifold projection method for coupling rods to rigid-
bodies and simultaneously enforcing rod inextensibility. The use of
quasistatics and constraints provides an efficient treatment for stiff
twisting and stretching modes; at the same time, we retain the dy-
namic bending of the centerline and accurately reproduce the cou-
pling between bending and twisting modes. We validate the discrete
rod model via quantitative buckling, stability, and coupled-mode
experiments, and via qualitative knot-tying comparisons.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics

and Realism—Animation

Keywords: rods, strands, discrete holonomy, discrete differential geometry

1 Introduction

Recent activity in the field of discrete differential geometry (DDG)
has fueled the development of simple, robust, and efficient tools for
geometry processing and physical simulation. The DDG approach
to simulation begins with the laying out of a physical model that is
discrete from the ground up; the primary directive in designing this
model is a focus on the preservation of key geometric structures that
characterize the actual (smooth) physical system [Grinspun 2006].

Notably lacking is the application of DDG to physical modeling
of elastic rods—curve-like elastic bodies that have one dimension
(“length”) much larger than the others (“cross-section”). Rods have
many interesting potential applications in animating knots, sutures,
plants, and even kinematic skeletons. They are ideal for model-
ing deformations characterized by stretching, bending, and twist-
ing. Stretching and bending are captured by the deformation of a
curve called the centerline, while twisting is captured by the rota-
tion of a material frame associated to each point on the centerline.

1.1 Goals and contributions

Our goal is to develop a principled model that is (a) simple to im-
plement and efficient to execute and (b) easy to validate and test
for convergence, in the sense that solutions to static problems and
trajectories of dynamic problems in the discrete setup approach the
solutions of the corresponding smooth problem. In pursuing this
goal, this paper advances our understanding of discrete differential
geometry, physical modeling, and physical simulation.

Elegant model of elastic rods We build on a representation
of elastic rods introduced for purposes of analysis by Langer and
Singer [1996], arriving at a reduced coordinate formulation with a
minimal number of degrees of freedom for extensible rods that rep-
resents the centerline of the rod explicitly and represents the mate-
rial frame using only a scalar variable (§4.2). Like other reduced
coordinate models, this avoids the need for stiff constraints that
couple the material frame to the centerline, yet unlike other (e.g.,
curvature-based) reduced coordinate models, the explicit centerline
representation facilitates collision handling and rendering.

Efficient quasistatic treatment of material frame We addition-
ally emphasize that the speed of sound in elastic rods is much faster
for twisting waves than for bending waves. While this has long
been established, to the best of our knowledge it has not been used
to simulate general elastic rods. Since in most applications the
slower waves are of interest, we treat the material frame quasistat-
ically (§5). When we combine this assumption with our reduced
coordinate representation, the resulting equations of motion (§7)
become very straightforward to implement and efficient to execute.

Geometry of discrete framed curves and their connections

Because our derivation is based on the concepts of DDG, our dis-
crete model retains very distinctly the geometric structure of the
smooth setting—in particular, that of parallel transport and the
forces induced by the variation of holonomy (§6). We introduce
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Figure 2: Helical perversion in experiment and simulation: starting from the natural shape of a Slinky R© (top) we first remove writhe by
pinching the flat cross-section between two fingers and traveling from one end to the other, arriving at a fully stretched, almost flat ribbon
(middle). By bringing the ends together, a persistent perversion forms (bottom), whose shape is surprisingly different from the natural shape.

simple algebraic tools and mnemonic diagrams that make it possi-
ble to carry out in a methodical manner derivations involving the
discrete connection induced by parallel transport. These tools are
the central building blocks for deriving forces associated to dis-
placements of the rod’s centerline and twist of the material frame.

Inextensibility and encapsulated coupling with rigid-bodies

When simulating inextensible rods, it becomes profitable to enforce
the rod’s inextensibility via constraints rather than stiff penalty
forces. Also, in general simulation applications, and in computer
animation and gaming, it is often useful to enforce boundary con-
ditions by coupling the rod to another physical system—most natu-
rally, to a rigid-body, which carries exactly the degrees of freedom
as any point on an elastic rod (i.e., position and orientation). Our
approach in §8 handles both types of constraints, emphasizing phys-
ical correctness as well as an important software reuse principle:
the method of coupling allows our rod simulation to interact with
any existing rigid-body simulation without internal modification of
either the rod or rigid-body codes.

Validation We show how to model and simulate inextensi-
ble elastic rods with arbitrary curved undeformed centerline and
anisotropic bending response (§7), and we show the simplifica-
tions that occur for naturally straight rods with isotropic bending
response. We validate our model against known analytic solutions
and present empirical evidence supporting the good convergence
behavior of our discrete model to its smooth counterpart (§9).

2 Related work

Mathematical analysis, modeling, and simulation of elastic rods
is an active field in mechanics [van der Heijden et al. 2003;
Goyal et al. 2007], numerical analysis [Falk and Xu 1995], and
geometry [Bobenko and Suris 1999; Lin and Schwetlick 2004]
with applications spanning medicine [Lenoir et al. 2006],
biology [Yang et al. 1993; Klapper 1996], the study of
knots [Phillips et al. 2002; Brown et al. 2004], and computer
graphics [Chang et al. 2007]. It is impossible to survey the many
works in this area in a brief space, so we discuss only the most
closely-related works. For a broader starting point, refer to the
expositions of Rubin [2000] and Maddocks [1984; 1994]. For the
state of the art in strand and hair simulation, refer to the survey by
Ward et al. [2007] and the course notes of Hadap et al. [2007].

In mechanical engineering, elastic rods are typically treated with a
finite difference [Klapper 1996] or finite element [Yang et al. 1993;
Goyal et al. 2007] discretization of the smooth equations. Gold-
stein and Langer [1995] observed that using the Bishop frame sim-

plifies both the analytical formulation and the numerical implemen-
tation of the dynamics of symmetric rods.

In graphics, Terzopoulos et al. [1987] introduced tensorial treat-
ments of elastica, and Pai [2002] applied a discretization of the
Cosserat rod model to simulate a strand. Bertails et al. [2006]
used a piecewise helical discretization to produce compelling an-
imations of curly hair using few elements per strand. Hadap [2006]
considered a serial multi-body chain and used differential algebraic
equations to treat the attendant numerical stiffness. These recent
works used an implicit centerline representation based on reduced
(curvature) coordinates.

By contrast, Choe et al. [2005] represented the centerline explicitly
by a sequence of edges connected by linear and torsional springs.
Grégoire and Schömer [2007] proposed an explicit centerline dis-
cretization coupled to a quaternionic material frame representa-
tion. Spillmann and Teschner [2007; 2008] built on this idea in
their development of algorithms for dynamic contact. Theetten et
al. [2006] presented a geometric spline-based approach that can
model large-displacement plastic deformations. These authors ar-
gue that an explicit (displacement) representation of the centerline
facilitates the simulation of complex contact scenarios and looping
phenomena. We share this view.

3 Overview

In many applications, the rod tends to bend or twist rather than to
stretch; therefore, the case of inextensible rods is prevalent and im-

Algorithm 1 Discrete elastic rod simulation

Require: u0 // Bishop frame vector in frame {t0,u0,v0} at edge 0
Require: x0 . . .xn+1 // position of centerline in rest state

Require: (x0, ẋ0) . . .(xn+1, ẋn+1) // initial position/velocity of centerline

Require: boundary conditions // free, clamped or body-coupled ends

1: precompute ωωω
j
i using (2)

2: set quasistatic material frame (§5.1)
3: while simulating do
4: apply torque to rigid-body (§8.2)
5: integrate rigid-body (external library) // [Smith 2008]

6: compute forces on centerline (§7.1)
7: integrate centerline (§7.2) // [Hairer et al. 2006]

8: enforce inextensibility and rigid-body coupling (§8)
9: collision detection and response // [Spillmann and Teschner 2008]

10: update Bishop frame (§4.2.2)
11: update quasistatic material frame (§5.1)
12: end while
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portant. We visualize an inextensible rod as an infinitesimally thin,
fixed centerline that can bend but not stretch and that is surrounded
by a finite, but thin, elastic material. We consider the general case
of naturally curved rods with anisotropic bending response and note
the simplifications that occur in the special case of naturally straight
rods with isotropic bending response. We also present a simple and
efficient method for attaching a rod to a rigid-body (§8). The dif-
ferent components of our method are summarized in Algorithm 1.
Barred quantities are precomputed and subsequently held fixed.

4 Kirchhoff rods

4.1 Smooth setting

Framed-curve representation We describe the configuration of
a rod by an adapted framed curve Γ = {γγγ ; t,m1,m2} (see Fig. 3).
Here γγγ(s) is an arc length parameterized curve in R

3 describing the
rod’s centerline; the assignment of an orthonormal material frame
{t(s),m1(s),m2(s)} to each point on the centerline contains the
requisite information for measuring twist. The material frame sat-
isfies t(s) = γγγ ′(s), i.e., it is adapted to the centerline such that the
first material axis is tangent to the curve. We will refer to κκκ = t′ as
the centerline’s curvature (normal) vector.

Elastic energy The Kirchhoff theory of elastic rods assigns an
elastic energy, E(Γ), to any adapted framed curve Γ. This energy is
assembled from three scalar functions that measure strain—given
by the change of the orthonormal frame {t(s),m1(s),m2(s)} ex-
pressed in its own coordinates:

ω1 = t′ ·m1, ω2 = t′ ·m2, and m = m′1 ·m2 .

Notice that since t′ = κκκ , the first two of the above terms, ω1 and
ω2, represent the rod’s curvature vector expressed in material coor-
dinates and measure the bending of material frame. The last term,
m, refers to the twist of the material frame around the tangent. Ac-
cordingly, total elastic energy contains bending and twisting contri-
butions:

E(Γ) = Ebend(Γ)+Etwist(Γ) .

The classical Kirchhoff equations for rods are obtained
from this type of energy using Lagrangian mechanics (see,
e.g., [Audoly and Pomeau 2008]). The goal of the present paper is
to derive a discrete form of these equations.

Our assumption that s is an arc length parameterization implies that
the rod is inextensible; therefore, we do not include a stretching en-
ergy. Instead, we enforce inextensibility via an auxiliary constraint
(§8). It is straightforward to drop this assumption by also including
a stretching term.

4.1.1 Bending energy

When the rod’s undeformed configuration is straight (as opposed
to curved) and the bending response is isotropic (as opposed to giv-
ing preference to some bending directions over others), the bending
energy takes the simple form

Ebend(Γ) =
1

2

∫

αωωω2ds =
1

2

∫

ακκκ2ds ,

where the 2-vector ωωω = (ω1,ω2)
T represents the centerline curva-

ture vector expressed in the material frame coordinates and α is the
rod’s bending modulus.

We generalize this to anisotropic bending response by replacing
the (isotropic) dot product with a general quadratic form B (a sym-
metric positive definite 2×2 matrix), so that ωωωTBωωω is the bending

tt
γ(s)

Figure 3: Adapted framed curve (Left) The configuration of
an elastic rod is represented by a curve γγγ(s) and a material
frame {t(s),m1(s),m2(s)}. (Right) The material frame is encoded
by an angle of rotation θ relative to the natural Bishop frame
{t(s),u(s),v(s)}.

energy density. We do not assume that B is diagonal—in fact, we
determine B by requiring that the undeformed material frame is a
Bishop frame (see below). We also generalize to naturally curved
rods by subtracting away the undeformed centerline curvature ωωω ,
i.e., using (ωωω−ωωω) in place of ωωω above.

Putting all this together, we have

Ebend(Γ) =
1

2

∫

(ωωω−ωωω)TB(ωωω−ωωω)ds ,

where barred quantities refer to the undeformed configuration. The
particular case of an isotropic, naturally straight rod is recovered by
taking B = α Id2×2 and ωωω = 000.

4.1.2 Twisting energy

Letting m = m′1 ·m2 denote the twist of the material frame about
the centerline, the twisting energy is given by

Etwist(Γ) =
1

2

∫

βm2ds .

The formula m = m′1 ·m2 gives an expression for the twist in terms
of material vectors immersed in ambient space. We now seek an
equivalent expression that exposes a reduced set of coordinates.

Parallel transport and the Bishop (natural) frame Given a
fixed centerline, consider the task of assigning to it the geometri-
cally most natural (and physically the most relaxed) frame. The
Bishop frame {t(s),u(s),v(s)} for a given centerline is an adapted
frame with zero twist uniformly, i.e., u′ · v = −v′ ·u = 0. The as-
signment of an adapted frame to one point on the curve uniquely
fixes the Bishop frame throughout the curve. Our convention is to
assign the Bishop frame at the first endpoint (s = 0) of the curve.

Consider traversing the centerline from one end to the other at unit
speed. The evolution of the Bishop frame (and any other orthonor-
mal frame) can be described in terms of its Darboux vector, Ω(s):

t′ = Ω× t , u′ = Ω×u , and v′ = Ω×v .

Since by the definition of the Bishop frame, u′ · v = 0, it fol-
lows from the second equation that Ω has no tangential component
(along t). This, together with the first equation implies that Ω = κb,
where κb = t×κκκ is the curvature binormal along the centerline.

The Darboux vector of the Bishop frame serves to define paral-
lel transport, a concept that plays a central role in the remainder
of this paper. We parallel transport a vector x from one point on
the centerline to another by integrating the equation x′ = κb× x.
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Figure 4: Notation Angles and vectors used in our discrete model.

Thus, infinitesimally, parallel transport corresponds to a rotation
about the binormal—a concept that we will use again in our dis-
crete model. Parallel transport keeps the tangential component of
x tangential, and evolves the cross-sectional component of x via a
tangential velocity, in particular without rotating the cross-section
about the centerline. Observe that the three Bishop axes evolve un-
der parallel transport.

Curve-angle representation The (twist-free) Bishop
frame allows for a simple parameterization of the material
frame [Langer and Singer 1996]. Let θ(s) be the scalar function
that measures the rotation about the tangent of the material frame
relative to the Bishop frame (see Fig. 3):

m1 = cosθ ·u+ sinθ ·v , m2 =−sinθ ·u+ cosθ ·v .

The key observation is that twist, m, can be expressed in terms of θ
by m(s) = θ ′(s). This relation is easily derived using the facts that
m = (m1)

′ ·m2 and u
′ ·v = 0. Hence, we write the twist energy as

Etwist(Γ) =
1

2

∫

β (θ ′)2ds .

Observe that we have expressed the elastic energy of Kirchhoff rods
by two dominant players: the position of the centerline, γγγ , and the
angle of rotation, θ , between the Bishop and the material frame.
This reduced coordinate representation is the cornerstone of our
discrete theory.

4.2 Discrete Kirchhoff rods

When painting the discrete picture, our guiding principle is to seek
a viewpoint that builds on the same geometric principles as the cor-
responding smooth theory.

Primal vs. dual We distinguish between primal quantities, as-
sociated with vertices and decorated with lower indices, and dual
quantities, associated with edges and decorated with upper indices.
This diagram summarizes our indexing and notation conventions:

e0 e1 e2 en
x
0

x
1

x
2

x
3

x
n

x
n+1

Discrete framed curves A discrete framed curve, Γ, consists of
a centerline comprised of (n+ 2) vertices x0, . . . ,xn+1 and (n+ 1)
straight edges e0, . . . ,en such that ei = xi+1− xi, together with an
assignment of material frames Mi = {ti,mi

1,m
i
2} per edge (see

Fig. 4). We consider adapted frames, where ti = ei/|ei| is the unit
tangent vector per edge. Notice that tangent vectors of polygonal
curves are uniquely defined at edges, whereas their definition at

vertices would be ambiguous. Since tangent vectors belong to the
triad that makes up frames on curves, we naturally assign frames to
edges, rather than to vertices.

Pointwise vs. integrated quantities In the smooth setting, we
consider certain quantities (i.e., curvature and twist) at each point
on the rod, and we define the energy by integrating over the length
of the rod. By contrast, in the discrete setting, certain quantities
often emerge naturally in an integrated rather than a pointwise way.
For example, relating discrete curvature to the turning angle be-
tween incident edges corresponds to an integration over the curve’s
Gauss image [Grinspun 2006].

We refer to an integrated quantity as a measure that associates a
number to a domain D of the curve, corresponding to an integral
of a function over that domain. To convert an integrated quantity
back to a pointwise one, we simply divide by the length, |D |, of
the domain of integration. In the discrete case, we define Di as the
Voronoi region associated to each vertex, having length |Di|= li/2,
where li = |ei−1|+ |ei|.

4.2.1 Discrete bending energy

Recall that the key player for formulating elastic bending energy in
the smooth case was the curvature of the centerline.

Discrete curvature Since each edge is straight, it follows that
discrete curvature is naturally associated with vertices. Letting φi
denote the turning angle between two consecutive edges (see Fig. 4)
we define (integrated) curvature by

κi = 2tan
φi
2

.

We will see in §6 that this definition of discrete curvature emerges
naturally from an analysis of the geometry of discrete rods, and to
be consistent throughout, we will use this definition in the bending
energy. Note that κi→∞ as incident edges bend toward each other,
so this measure of curvature will penalize sharp kinks in the rod.

Discrete curvature binormal We define the curvature binormal
at a vertex (an integrated quantity) by

(κb)i =
2ei−1× ei

|ei−1||ei|+ ei−1 · ei
. (1)

Observe that the vector (κb)i is orthogonal to the osculating
plane passing through two consecutive edges and has magnitude
2tan(φi/2). In particular, this quantity is well-defined in the case of
collinear edges, even though the binormal itself is not.

Discrete bending energy We now have all the pieces to assem-
ble the bending energy of a discrete naturally straight, isotropic rod:

Ebend(Γ) =
1

2

n

∑
i=1

α

(

κbi

li/2

)2
li

2
=

n

∑
i=1

α(κbi)
2

li
.

The division by li/2 is due to converting the integrated quantity κbi
into a pointwise one (see above), whereas the multiplication by li/2
takes care of the measure of the domain of integration, Di.

Recall that for an anisotropic bending response, we require the ma-
terial curvatures given by inner products between curvature vectors
and material frame vectors. Using the curvature binormal (κb)i as
defined by (1), we express the material curvatures as

ωωω
j
i =

(

(κb)i ·m j
2
,−(κb)i ·m j

1

)T
for j ∈ {i−1, i} . (2)
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Here, following our primal-dual notation, the double indices—
upper and lower—correspond to an edge-vertex pair. Barred quan-
tities we denote evaluation on the undeformed configuration.

With these definitions, the bending energy of a discrete rod is

Ebend(Γ) =
n

∑
i=1

1

2li

i

∑
j=i−1

(

ωωω
j
i −ωωω

j
i

)T
B
j
(

ωωω
j
i −ωωω

j
i

)

. (3)

This formulation allows for a general (anisotropic) bending re-
sponse and a general (curved) undeformed configuration. As in the
smooth case, the simple expression of the special case is recovered

by taking B
j
= α Id2×2 and ωωω

j
i = 000.

4.2.2 Discrete twisting energy

To formulate the discrete twisting energy, we follow the same pro-
gression as in the smooth setting, first laying out the notions of
parallel transport and the Bishop frame, and then introducing the
angle of rotation to the material frame.

Discrete parallel transport and Bishop frame We define
discrete parallel transport in analogy to the smooth case, i.e.,

as a rotation Pi about the curvature binormal,

Pi

(

ti−1
)

= ti, Pi

(

ti−1× ti
)

= ti−1× ti .

By convention, Pi is the identity if ti−1 = ti,
whereas Pi is not defined if ti−1 = −ti. Par-
allel transport is a key notion that allows us
to generalize the notion of twist from the
smooth to the discrete setting.

In order to define Bishop frames, we draw upon the smooth case by
transporting a unit vector u0, which is orthogonal to t0, along the
rod using our rotation operators Pi, i.e., we iteratively define

ui = Pi

(

ui−1
)

.

The third axis of each Bishop frame is then vi = ti×ui.

Bishop frame update The Bishop frame is by definition adapted
to the centerline. This requires that u0 ⊥ t0, a condition that must
be maintained during simulation. Each simulation step moves the
centerline to a new position, so that in general after Algorithm step
9 the requirement u0 ⊥ t0 may be violated (the exception is when
t0 is clamped). We re-adapt the frame by parallel transporting the
Bishop vector (in time)—in analogy to the parallel transport along
the centerline—by computing a rotation operation.

Material frame representation Since both the material frame
and Bishop frame are defined at edges, let θ i denote the angle
needed to rotate the Bishop frame into the material frame at edge ei

(see Fig. 4). Then the material frame vectors at edge i are

mi
1 = cosθ i ·ui + sinθ i ·vi , and mi

2 =−sinθ i ·ui + cosθ i ·vi .

Discrete twisting energy In perfect analogy to the curve-angle
representation in the smooth case, we adopt the twisting energy

Etwist(Γ) =
n

∑
i=1

β
(θ i−θ i−1)2

li
=

n

∑
i=1

βm2
i

li
,

where the scalar mi = θ i−θ i−1 is the (integrated) discrete twist.
The variable mi measures the angle between two adapted frames:
the result of parallel transporting the material frame from edge ei−1

to ei and the material frame at edge ei itself.

5 Quasistatic material frame postulation

Our goal is to arrive at equations describing the time-evolution of
the centerline of the rod. We first pave the way with an important
simplifying assumption.

The speed of a twist wave increases as the rotational inertia of
the cross section vanishes. By contrast, bending waves are disper-
sive [Sommerfeld 1964]—their speed depends on their wavelength,
λ—with velocity vh/λ , where h is the rod radius, and v is solid ma-
terial’s speed of sound. Consequently, twist waves travel faster than
bending waves, for bending waves with large wavelengths λ ≫ h,
i.e., much larger than the rod radius. For the problems we consider,
the relevant dynamics are in (large-wavelength) bending modes,
and it is wasteful of computation to resolve the temporal evolution
of the twist waves.

Consider the limit of a vanishing cross-sectional rotational inertia:
twist waves propagate instantly. At any instant in time, the material
frames are the minimizer of elastic energy, subject to any given
boundary conditions on the material frame:

∂E(Γ)

∂θ j
= 0 , (4)

Note that the quasistatic treatment of the material frame eliminates
the θ j variables as degrees of freedom from the system: given the
rod’s centerline and the boundary conditions on the material frame,
(4) is used to determine what the material frame must be.

Boundary conditions The value of θ j for an edge may be pre-
scribed by a given boundary condition on the material frame. In
practice, we consider stressfree ends (i.e., no boundary conditions)
or clamped ends (i.e., assigning the material frame for j = 0 and
j = n). We use (4) for all θ j variables whose value is not pre-
scribed by a boundary condition, ensuring that the number of equa-
tions matches the number of unknowns for the angles θ j.

5.1 Quasistatic update

During simulation, we enforce the quasistatic nature of the material
frame by ensuring that (4) is satisfied before forces are computed.

Special case of naturally straight, isotropic rods For an
isotropic rod with a naturally straight undeformed configuration, (4)
implies that a clamped rod has uniform twist,

mi

li
=

θn−θ0

2L
= constant , (5)

where 2L = ∑n
i=1 li, and the pointwise twist mi/li (recall §4.2.2)

depends only on the boundary conditions: the difference of angles
of the end edges, θn−θ0. Substituting the above into the formula
for E(Γ) gives the simplified expression

E(Γ) =
n

∑
i=1

α(κb)2i
li

+
β
(

θn−θ0
)2

2L
. (6)

Observe that the twist energy depends only on the angle between
material and Bishop frame at the boundary edges of the rod. For
the naturally straight, isotropic case, the above implies that a rod
with stressfree ends has no twist.

General case For the general case, we use Newton’s method
to minimize the elastic energy E(Γ) with respect to the material
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Figure 5: Asymmetry of twist: anisotropy of the cross-sections
and natural curvature of the centerline “conspire” to produce non-
uniform twist distribution. From top to bottom: reference configu-
ration, moderate twist, large twist.

frames, which requires both the gradient and Hessian of the energy
with respect to the θ j variables. The gradient is given by

∂E(Γ)

∂θ j
=

∂

∂θ j

(

W j +W j+1

)

+2β

(

m j

l j
− m j+1

l j+1

)

, (7)

where
∂

∂θ j
Wi =

1

li
(ωωω

j
i )

T JB
j
(ωωω

j
i −ωωω

j
i ) .

To derive the latter identity, note that ∂m
j
1
/∂θ j = m

j
2

and

∂m
j
2
/∂θ j = −m j

1
to obtain ∂ωωω

j
i /∂θ j = −Jωωω j

i , where J acts on
two dimensional vectors by counter-clockwise π/2 rotation. As ex-
pected, (5) is a special case of (7).

The Hessian, H, is obtained by differentiating (7) with respect to
θ j−1, θ j, and θ j+1. The resulting components of the Hessian are:

H j, j−1 =−2β

l j
, H j, j+1 =− 2β

l j+1

,

H j, j =
2β

l j
+

2β

l j+1

+
∂ 2

(∂θ j)2
(

W j +W j+1

)

,

where
∂ 2

(∂θ j)2
Wi =

1

li
(ωωω

j
i )

T JTB
j
J(ωωω

j
i )−

1

li
(ωωω

j
i )

TB
j
(ωωω

j
i −ωωω

j
i ) .

Note that the Hessian is tridiagonal and so it can be factored inO(n)
time. Additionally, in order to accelerate the convergence of New-
ton’s method, we combine it with a line search along the Newton
direction [Press et al. 2002]. Finally, we note that Newton’s method
converges quickly: the θ j variables do not change significantly be-
tween time steps, so that previous values are a good initial guess.

Forward We presented the bending and twisting energy of a
smooth Kirchhoff rod and constructed by direct analogy the corre-
sponding energies for a discrete Kirchhoff rod. The challenge ahead
is to derive the elastic forces induced by the gradients of these ener-
gies. These forces will include terms that arise from the dependence
of the vectors u j and v j on centerline positions, xi. Since these
Bishop vectors are defined via parallel transport, we must consider
the variation of parallel transport with respect to moving the center-
line. For this, we turn to the concept of holonomy.

6 Discrete holonomy

Holonomy is a classical concept from differential geometry: it mea-
sures the deficit of geometric data (frames) to close up when paral-
lel transported around a closed loop. In our case (of discrete rods),
holonomy depends—just like parallel transport itself—only on the
centerline; it measures the (scalar) angle when parallel transporting
an adapted frame along a closed loop of discrete edges. Indeed, the
fact that holonomy can be expressed as a scalar is the reason why
it is such a useful concept for computing forces.

Consider the variation of two consecutive edges ei−1(ε) and ei(ε)
with tangents ti−1(ε) and ti(ε), and parallel transport Pi(ε), where
ε denotes the variation parameter. We denote by P̃i(ε) the parallel
transport from ti(0) to the deformed configuration, ti(ε), i.e., the
rotation that satisfies P̃i(0) = Id and

P̃i(ε)
(

ti(0)
)

= ti(ε) and P̃i(ε)
(

ti(0)× ti(ε)
)

= ti(0)× ti(ε) .

Now consider the concatenation of parallel transports given by

Ri−1(ε) =
(

P̃i−1(ε)
)T ◦

(

Pi(ε)
)T ◦ P̃i(ε)◦Pi(0) , (8)

which we depict by the followingmnemonic diagram, where arrows
represent parallel transport:

ti−1(ε) - ti(ε)

ψi(ε)

ti−1(0)

6

- ti(0)

6

Observe that Ri−1(ε) corresponds to traversing this diagram in

counter-clockwise order, starting at ti−1(0). It follows from the def-

initions that Ri−1(ε) maps the tangent ti−1(0) to itself and is there-
fore a rotation by angle ψi(ε) about axis ti−1(0). In the language
of differential geometry, ψi(ε) is the holonomy of the connection
induced by parallel transport around the depicted closed loop.

The ingredient that we require is the gradient of ψi for 1 ≤ i ≤ n.
Building on the literature of a related quantity known as the writhe
of polygonal curves [de Vries 2005], we obtain the variation of ψi

with respect to a centerline displacement δx:

δψi =
−2ti−1× ti

1+ ti−1 · ti
·
(

1

2

δxi−δxi−1
|ei−1| +

1

2

δxi+1−δxi
|ei|

)

.

It can be shown that the corresponding expression in the smooth
setting is δ (

∫

ψds) =−∫ κb ·(δx)sdswhere the subscript s denotes
differentiation with respect to s. Compare the discrete expression to
the integrand of the smooth case; the second factor of the discrete
expression is a finite-difference approximation of (δx)s. In analogy
to the smooth form, we take the first factor to be the integrated
curvature binormal. Note that this definition coincides with (1),
and allows us to rewrite the discrete result as

∇i−1ψi =
(κb)i

2|ei−1|
, ∇i+1ψi =−

(κb)i
2|ei|

, (9)

and ∇iψi =−(∇i−1 +∇i+1)ψi.

6.1 Variation of parallel transport

With our new tool in hand, we can derive the change in the Bishop
frame when varying the rod’s centerline. Since the Bishop frame is
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by requirement adapted to the curve, we are interested in the angle
that the frame is rotated by about the tangent. This situation is again
depicted in the following diagram:

F0(ε)
0- F1(ε)

0 - · · · F j−1(ε)
0- F j(ε)

ψ1(ε) ψ2(ε) ψ j(ε)

F0(0)

0

6

0
- F1(0)

6

0
- · · · F j−1(0)

6

0
- F j(0)

Ψ j

6

Here, the Bishop frames Fi = {ti,ui,vi} are displayed in place of
the tangents to show that we are parallel-transporting these frames
from one edge to the next. Additionally, each labeled arrow indi-
cates the angle needed to align the result of parallel transporting the
frame at the tail of the arrow with the frame at the head. Thus, the
horizontal arrows are labeled with 0 to indicate that no twist is re-
quired to align Pi(F

i−1) to Fi; the first vertical arrow is also labeled

with 0 because we ensure that F0 is always updated via parallel
transport (see §4.2.2). We are interested in the angle of rotation,
Ψ j, required to align P̃ j(ε)

(

F j(0)
)

to F j(ε).

Since parallel transport commutes with twist and holonomy is ad-
ditive under concatenation of loops, it follows from traversing
this diagram in counter-clockwise order that the resulting angle is

Ψ j = ∑
j
i=1 ψi. For computing forces, we require the gradient of this

angle with respect to vertex positions, which is given by

∇iΨ
j =

j

∑
k=1

∇iψk . (10)

By (9), this sum will have at most three non-zero terms.

Discussion In hindsight, we view the relation of holonomy to
the profile of the centerline as an extension of the celebrated
Călugăreanu-White-Fuller theorem [1971] for discrete curves.
Fuller [1978] noted that this theorem is applicable to the equilibria
of closed elastic rods with isotropic cross-sections. Our develop-
ment extends to the general case of open boundaries and even to
anisotropic cross-sections.

7 Equations of motion

We are now ready to write the equations governing the time-
evolution of the rod’s centerline. Since the material frames depend
on the rod’s centerline and are not independent degrees of freedom
(see §5), we must consider this dependence as well when comput-
ing the centerline forces.

7.1 Forces on centerline

In deriving the forces on the rod’s centerline, we must consider how
the energy depends on the xi variables—both directly and indirectly
by considering the effect that moving a vertex has on the rod’s ma-
terial frame. The force acting on vertex xi is therefore given by

−dE(Γ)

dxi
=−∂E(Γ)

∂xi
−

n

∑
j=0

∂E(Γ)

∂θ j

∂θ j

∂xi
.

Here, the total derivative dE/dxi takes into account the implicit
dependence of potential energy on centerline positions, whereas the
partial derivative only takes into account explicit dependence.

Recall from (4) that ∂E/∂θ j vanishes for all edges for which θ j

is not prescribed by a boundary condition. Therefore, for stressfree

boundary conditions, the sum is zero. For clamped boundaries, only
one component of this sum could be non-zero, allowing us to write
the force as

− ∂E

∂xi
− ∂E

∂θn

∂θn

∂xi
.

To evaluate ∂θn/∂xi, recall from §6.1 that varying the centerline
rotates the Bishop frame at edge en by angle Ψn about the tangent
tn. Therefore, to keep the material frame aligned to the boundary
condition, we must subtract this angle from θn to obtain

− ∂E

∂xi
+

∂E

∂θn

n

∑
j=1

∂ψ j

∂xi
.

For clamped boundaries, we give the components required to eval-
uate this force for both the special and general case.

Special case For naturally straight, isotropic rods, the forces on
vertex xi are given by up to three contributions:

−2α

l j

(

∇i(κb) j
)T

(κb) j +
β (θn−θ0)

L
∇iψ j i−1≤ j ≤ i+1 ,

with the gradient of holonomy given by (9) and the gradient of the
curvature binormal given by

∇i−1(κb)i =
2[ei]+ (κbi)(e

i)T

|ei−1||ei|+ ei−1 · ei
,

∇i+1(κb)i =
2[ei−1]− (κbi)(e

i−1)T

|ei−1||ei|+ ei−1 · ei
,

∇i(κb)i =−(∇i−1 +∇i+1) (κb)i .

Here [e] is a skew-symmetric 3× 3 matrix acting on 3-vectors x
by [e] · x = e× x. In deriving these gradients we have used the
assumption of inextensibility of the rod’s edges.

General case For anisotropic rods with a curved rest shape, the
required expressions for the forces are given by:

∂E

∂θn
=

1

ln
(ωωωn

n)
T JB

n
(ωωωn

n−ωωωn
n)+

2βmn

ln
and

∂E

∂xi
=

n

∑
k=1

1

lk

k

∑
j=k−1

(

∇iωωω
j
k

)T
B
j
(

ωωω
j
k
−ωωω

j
k

)

,

where the gradient of the material-frame curvature ωωω
j
k
is given by

∇iωωω
j
k
=

(

(m
j
2
)T

−(m
j
1
)T

)

∇i(κb)k− Jωωω
j
k
(∇iΨ

j)T . (11)

This last result is readily apparent from the definition of material-
frame curvature in (2) and the variation of the Bishop frame in §6.1.

7.2 Integrating the centerline

Since the material frame is always updated to be in quasistatic equi-
librium (see §5.1), we only need to update the centerline based on
the forces derived above. The equations of motion are

Mẍ =−dE(Γ)

dx
,

where M is a 3(n+ 2)× 3(n+ 2) (diagonal) mass matrix associ-
ated to centerline positions. We discretize this equation using the
symplectic Euler method [Hairer et al. 2006]. We use a manifold-
projection method to enforce the inextensibility constraint.
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8 Constraints

For simulating extensible rods, it would suffice to include a stretch-
ing component to the energy; however, simulating inextensible rods
using stretch forces would lead to unnecessarily stiff equations. In
addition, many interesting physical systems can be modeled by
the coupling of elastic rods to rigid-bodies. Canonical examples
include the torsional and Wilberforce pendulums, comprised of a
rigid-body suspended under gravity by a thin elastic rod. To avoid
numerical stiffness associated with maintaining inextensibility and
rigid-body coupling, we add auxiliary constraints to our system.

Inextensibility constraints For each edge of the rod, we use
the quadratic constraint equations ei · ei− ei · ei = 0, where (the pre-
computed) ei refers to the undeformed configuration.

Rigid-body coupling constraints The welding of the body to
the rod requires the body’s position and orientation, and the rod
edge’s position and material frame, to be in one-to-one correspon-
dence. Attaching the rigid-body to the first edge of the rod gives
three constraints:

q ·q−1 = 0 , qx0 q
∗+ r−x0 = 0 , qx1 q

∗+ r−x1 = 0 ,

where r ∈ R
3 is the translation vector and q ∈H is the unit quater-

nion [Hanson 2006] mapping the body’s center of mass and orien-
tation, respectively, from the reference to the current configuration,
and q∗ is the conjugate of q. The first equation ensures that q is
unit length, so qx0q

∗ is a rotation of x0 that is summed with r us-
ing vector addition. The second and third equations ensure that the
rod’s first edge and the rigid-body transform identically.

8.1 Enforcing constraints

Numerous approaches are available in the literature for maintaining
constraints acting on a mechanical system [Shabana 2001]. Perhaps
the most simple and straightforward of these is to use the penalty
method; alas, as mentioned above, the penalty forces required to
closely enforce the constraints are unacceptably stiff and require
small time steps to ensure stability [Goldenthal et al. 2007].

An alternative is to employ an augmented Lagrangian formulation.
Such formulations in general introduce additional variables (i.e.,
Lagrange multipliers) to enforce the constraints during the time in-
tegration step of the algorithm. The exception are manifold pro-
jection methods [Hairer et al. 2006], which perform constraint en-
forcement as a post-integration step. We choose to maintain the
constraints using this approach.

A manifold projection method integrates a mechanical system by
alternating between an unconstrained time integration step and a
constraint enforcement step. For the unconstrained step, we use an
explicit symplectic Euler integrator (Algorithm step 7), and we call
the ODE [Smith 2008] library to time step the rigid-body (Algo-
rithm step 5).

Manifold projection allows us to reuse an existing rigid-body code
without modifying its time integration, collision response, or other
internal structures. However, any other method for enforcing these
constraints could be used, and we include a discussion of our ap-
proach for completeness.

Fast manifold projection For the enforcement step, we adopt
and extend the fast projection method of Goldenthal et al. [2007].
This method takes an unconstrained configuration and finds a
nearby constrained configuration. The notion of “nearby” is made
precise by the natural metric on the configuration manifold. We ex-
tend the application of fast projection to coupled systems involving

both positional as well as rotational degrees of freedom by consid-

ering the metric induced by the kinetic energy 1
2yM̃yT , where the

(3n+12)× (3n+12) generalized mass matrix and the generalized
velocity y ∈ R

3n+12 are defined respectively by

M̃ =





4 · I
M · Id3×3

M



 and y = (q−1q̇, ṙ, ẋ) .

Here M is the rod’s (diagonal) 3(n+ 2)× 3(n+ 2) mass matrix,
M is the body’s total (scalar) mass, and I is the body’s (symmetric)
moment of inertia tensor expressed as a 3×3 matrix in the reference
coordinates. Since q is a unit quaternion, q−1q̇ corresponds to a
vector in R

3 [Hanson 2006]. The kinetic energy has contributions
from the body rotation, body translation, and centerline translation.

We initialize the first iteration of fast projection with the results of
an unconstrained time step. Each step of fast projection improves
on the guess by computing the first Newton iteration for the min-
imization of the functional yM̃yT −CTλλλ , where (using Golden-
thal’s notation) C is the vector of constraint equations, and λλλ is
the vector of corresponding Lagrange multipliers. Thus, by for-
mulating the kinetic energy using a generalized mass matrix in a
high-dimensional configuration space, we are able to directly apply
fast projection iterations to rigid-body coupling. In all of our exam-
ples, we found that after 3–5 steps the method converged to within
a tolerance of 10−8 in satisfying the constraint C = 0.

After the iterations converge, fast projection requires a velocity up-
date [Goldenthal et al. 2007]. Using our generalized coordinates,
the appropriate update is

(q̇, ṙ, ẋ)← (q̇, ṙ, ẋ)− 1

h
(2q0q

−1,r0− r,x0−x) .

Our discussion above immediately generalizes to the case of mul-
tiple rigid-bodies attached to multiple rods. As a corollary, we can
couple a rigid-body to any edge on the rod simply by splitting the
rod at that edge. However, care must be taken to understand the
induced boundary conditions: each rigid-body’s position and ori-
entation serves to clamp the position and orientation of the center-
line and material frame for each coupled rod end-edge. After fast
projection, the material frame vector induced by the rigid body ori-
entation ism0

1 = qm0
1q
∗.

8.2 Torque transfer

We consider a methodical categorization of those interface forces
that are automatically transferred between the rod and rigid-body
via projection and those that remain to be transferred explicitly.
Observe that forces that correspond to gradients of the independent
variables, q,r,x, are automatically transferred between the rod and
the body by the projection step. The material frame is not an inde-
pendent variable—it is a function of the centerline position and of
the boundary conditions (see §5). Therefore, in Algorithm step 4,
we explicitly transfer the torque acting on the material framem0

1, to
the coupled rigid-body. Note that the rigid-body’s relatively large
moment of inertia ensures that the explicit coupling is non-stiff.

The force acting on the material frame corresponds to the gradi-
ent of energy with respect to the dependent angles, θ i. By the
quasistatic material frame assumption, the torque, τ = |τ|t0, ex-
erted by the rod on the body is equal and opposite to the torque
exerted by the body on the rod. To derive the magnitude of the
torque we turn to the principle of virtual work [Lanczos 1986].
Holding the centerline fixed, consider a virtual displacement, δθ0,
which varies the material frame about e0. Note that δθ0 also af-
fects the body’s orientation, due to the rod-body constraint. The
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Figure 6: Torque transducer: two rigid-bodies coupled by a rod.
The total energy, broken up into contributions from the bodies and
the rod, is plotted.

work performed by the body on the rod equates to the change in the
rod’s stored energy: |τ|δθ0 = (dE/dθ0)δθ0. Since this holds for

any δθ0, it follows that |τ| = dE/dθ0. In the isotropic case, this

yields |τ|= β (θn−θ0)/L. In the anisotropic case, we expand the

full derivative as dE/dθ0 = ∑i(∂E/∂θ i)(∂θ i/∂θ0). By the qua-
sistatic assumption, most terms in this summation are zero, leading
to |τ|= ∂E/∂θ0, which can be evaluated using (7).

9 Validation

The interaction between twisting and bending modes produces sur-
prising instability phenomena, such as spontaneous buckling of
rods. These instabilities are important for a variety of applications,
such as for modeling DNA. When applied to some of these phe-
nomena, our model not only reproduces the correct behavior quali-
tatively, but in fact shows good convergence to analytical solutions
(for those models where an analytical treatment is available in the
literature). In the following we describe several example problems;
refer to Table 1 for corresponding performance measurements.

9.1 Convergence

analytical
n = 180
n = 140
n = 110
n = 80
n = 60
n = 40

1

0.5

3-3 s/s*

f(ϕ)

1

0.5

3-3 s/s*

f(ϕ)

uniform non-uniform

Figure 7: Localized buckling of a naturally straight, isotropic rod
with an imposed angle of twist. The rod buckles into a helix with
modulated amplitude (inset). Convergence of the envelope of this
helix toward the analytical solution in the smooth case is observed
for both a uniformly sampled rod (left) and a rod where one half is
twice as refined as the other (right). The parameters for the simu-
lation are: rod length L = 9.29, bending modulus α = 1.345, twist
modulus β = .789, clamp rotated by 27 turns, imposed axial short-
ening of 0.3 units, corresponding to a theoretical maximal deviation
ϕ0 = 0.919.

Localized helical buckling When a naturally straight, isotropic
rod is clamped at its two ends with one end rotated by a given an-
gle, the rod buckles as the two ends are quasi-statically translated
towards one another. In the smooth case, the buckling of a long
rod under twist is described by an exact solution of the equations
of equilibrium. This analytical solution describes nonlinear (finite
amplitude) buckling away from the straight configuration and mixes
bending and twisting effects. We studied convergence of the equi-
libria of our discrete model towards this solution in the limit of
refinement. The geometry is shown in the inset of Figure 7. We de-
note by s the arc length, ex the unit vector parallel to the axis passing

through the clamps, ϕ(s) = cos−1(t ·ex) the angular deviation of the
tangent away from this axis, and ϕ0 =maxs ϕ(s) the maximal devi-
ation at the center of the pattern. The envelope of the helix is given

by f (ϕ(s)) = tanh2
(

s
s∗
)

, where s/s∗ is the dimensionless arc length

given by s/s∗ =
(

βm
2α

√

1−cosϕ0

1+cosϕ0

)

s, which simplifies to f (ϕ) =
cosϕ−cosϕ0

1−cosϕ0
(see e.g. [van der Heijden and Thompson 2000]). With

a fixed loading geometry, we obtain convergence towards this ana-
lytical solution under refinement (see Fig. 7).
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Figure 8: Michell’s buckling instability of an elastic ring with
imposed internal twist θn. Left: above a critical value of θn, the
planar, circular shape loses stability and buckles to a non-planar
shape. Right: domain of stability of the circular shape with radius
R = 1: simulations (dots) compared to theoretical threshold (black
curve). Each dot corresponds to a simulation run with particular
values of β and θn (α = 1 and n = 50 are fixed), initialized with
a slightly perturbed circular shape; dots are colored in light blue
when the amplitude of the perturbation decreases in time (stable)
and in purple when it increases (unstable).

Michell’s instability Another famous example of a rod becoming
unstable when subjected to twist is Michell’s instability, also known
as Zajac’s instability (see Fig. 8). When the ends of a naturally
straight, isotropic rod are closed into a ring in a twist-free manner,
the resulting shape is circular. When these ends are twisted by an
angle θn before they are closed up, and when this angle is pro-
gressively increased starting from zero, the ring suddenly starts to
writhe (buckle) out of plane, at a well-defined critical value of twist.
This effect is a perfect illustration of the coupling of the twist with
the shape of the centerline. This critical twist can be computed an-

alytically [Goriely 2006] as θn
c = 2π

√
3/(β/α). In Figure 8–right,

we study the stability of the circular shape numerically for different
values of the rod parameters and compare to the analytical predic-
tion. Our model displays excellent agreement with the predictions
of the smooth theory.

9.2 Special case

Instability of knots Although knots have been extensively stud-
ied as mathematical objects, the understanding of their mechanical
behavior is far less advanced. Very recently, an analytical solution
has been obtained describing the equilibrium shape of a loose trefoil
knot tied on a naturally straight, isotropic rod [Audoly et al. 2007]
in the case where no twist is applied. We ran a simulation of a
knotted rod with both ends clamped and were able to reproduce the
typical equilibrium shape of the knot, which is made of a large, al-
most circular loop connected to two flat tails by a braid region (see
Fig. 1–left). We next twisted the ends of the rod and found that the
shape of the knot first changes smoothly and then jumps at a critical
value of the twist. This jump happens both for positive and negative
applied twist, although the final shapes of the knot are qualitatively
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different (see Fig. 1). This fascinating behavior will be studied in
detail in a future paper [Audoly et al. 2008]—it can be easily repro-
duced using a small tube of an elastic material (a silicone wire in
our experiments), and we encourage the reader to try it!

Figure 9: Plectoneme formation: When the ends of a hanging
elastic rod are twisted, it takes on structures known as plectonemes.
The formation of plectonemes is governed by physical parameters,
such as the twist rate, viscosity of the ambient fluid, and gravity.

Plectonemes A rod generally forms entangled structures called
plectonemes when subjected to large twist. Typically, the pattern
formed by a twist-driven instability such as Michell’s instability
grows from a weakly helical shape at short times, to fully developed
plectonemes at long time. Such structures have been well-studied,
for instance in the context of DNA supercoiling [Yang et al. 1993].
In this experiment, we started with a naturally straight rod and de-
formed it into a parabola in a twist-free manner. Fixing the posi-
tions of the endpoints of the rod and progressively increasing twist,
we find that the rod starts to writhe out of the plane. Letting the
instability develop fully, we observe plectonemes (see Fig. 9). De-
pending on the viscous drag and gravity, we found that one or many
plectonemes can be obtained. Single plectonemes have been de-
scribed both analytically [van der Heijden et al. 2003] and numeri-
cally [Goyal et al. 2007] in several papers; we observed an interest-
ing phenomenon of plectonemes merging at long times, which has
seemingly not yet been studied.

The simulation of plectonemes requires the treatment of rod self-
contact, which is outside the scope of this paper; for the state of the
art, refer to the treatment by Spillmann and Teschner [2008].

9.3 General case

The coupling of twisting and bending modes of naturally curved or
anisotropic rods is fairly more complex than in the isotropic case,
as demonstrated by in following experiments.

Asymmetry of twist The combination of anisotropy and non-
zero rest curvature can result in a non-uniform distribution of twist
along the rod. In Figure 5, we show this effect for a rod with
anisotropic cross section, whose centerline is either V-shaped or
semi-circular in the reference configuration. We clamp one end
of each of these rods and twist the other. In the V-shaped case,
we observe that twist is first confined on one half of the rod—it
takes a significant amount of twist before twist manages to “jump
over” the kink in the middle of the rod. A similar phenomenon

occurs with the semi-circular shape, but it is less marked. In either
case, the twist concentrates near the end that is rotated, although the
rod properties are uniform along its length; this symmetry-breaking
points to the fact that that the equations governing the quasi-static
twist are nonlinear.

Helical perversion: Perversion is a classical pattern that can be
observed in naturally curved rods. It consists of a junction between
two helices with opposite chiralities. It has been described by Dar-
win in the tendrils of climbing plants and can be often observed in
tangled phone cords [Goriely and Tabor 1998]. Perversions can be
produced by first flattening a helical spring such as a Slinky R© into
a flat, straight ribbon by pulling on both of its ends (see Fig. 2–
middle); next, by progressively releasing its ends from this straight
configuration, one obtains a shape made of two mirror-symmetric
helices (see Fig. 2–bottom). The final shape is surprisingly dif-
ferent from the natural one as the chirality has been reversed in a
half of the spring, as revealed by comparison with Figure 2–top.
The existence of perversions is due to the nonlinear behavior of the
rod—perversions belong to a general class of solutions that can be
derived in nonlinear analysis by connecting two competing equi-
librium configurations, which are here the right-handed and left-
handed helices in the presence of natural curvature.

Figure 10: Hanging chain: A chain consisting of curved elastic
rods as links hangs under the influence of gravity. The material
parameters for each rod are B = 2Id2×2 and β = 2, with each link
in the chain having a radius of approximately 1 unit.

Hanging chain: free boundaries In Figure 10, we show a chain
hanging from its two ends under the influence of gravity. Each
link is an elastic rod with curved undeformed configuration with
stressfree boundary conditions on the material frames. As shown
in the accompanying animation, the two ends are pulled apart until
the chain breaks and the links fly apart. Even though we are not
applying a twist to any of the links in the chain, we still need the
material frame to represent the undeformed curvature of the rod—
recall that ωωω is defined as a 2-vector in material-frame coordinates.

9.4 Rigid-body coupling

When coupling rods with rigid-bodies, the transfer of energy be-
tween these systems results in complex motions—in particular,
through the interplay between bending and (non-uniform) twisting
of the rod and the translational and rotational moment of the at-
tached mass. In order to validate our model, we have in particular
tested its ability to faithfully reproduce real-world experiments.

Wilberforce pendulum This experiment reveals fascinating as-
pects of how bending and twisting interact and thereby affect the
motion of an attached rigid-body. Consider a helicoidal spring (an
isotropic rod whose reference state is a helix) whose upper end is
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Figure 11: Wilberforce pendulum: Due to a weak coupling be-
tween the bending and twisting modes of a stretched spring, the en-
ergy of the system is transferred back and forth between the trans-
lational (red) and angular (blue) modes of oscillations.

fixed, and attach a rigid-body to its lower end. The weight of the
body stretches the spring when the whole system is at rest. Mov-
ing the mass slightly upwards from this equilibrium and releas-
ing it, first leads to vertical oscillations. Progressively, the system
switches to twist oscillations and the vertical ones are extinguished;
later, the twist oscillations start to decrease and the vertical ones
reappear, and so on (see Fig. 11). The nonlinear behavior of the
spring, which is captured accurately by our model, is responsible
for this energy transfer between the two modes [Sommerfeld 1964]:
stretching a spring affects its eigenmodes. Note the presence of sta-
tionary waves in the spring, which are also clearly visible in our
simulation movie.

Torque transducer Rods can be used to couple rigid-bodies,
with the rod effectively acting as a “torque transducer” between
them. In Figure 6, we plot the kinetic and potential energy of the
two rigid-bodies and the rod (one of which has much higher mass
than the other), observing the energy transfer among the stored po-
tential energy of the rod and the rotational energy of the two rigid
bodies.

Figure 12: Tree in wind: rigid-bodies connecting multiple rods
together at a single point (reference configuration shown in inlay).
Using this method, we can simulate a tree bending and twisting in
response to a strong arctic wind. Note that without resistance to
twist, the tree would start spinning due to vortices in the wind.

Rigid-bodies for rigid couples Coupling rods with rigid-bodies
opens the possibility for complex simulations—in particular, for

fig. no. verts. time-step forces contact quas. update fast proj. total

1 60 4.0 0.026 0.05 0.021 0.21 0.31

5 49 1.0 0.025 0.018 0.021 0.12 0.18

6 200 2.0 0.072 0.09 0.064 0.81 1.0

9 275 1.0 0.13 0.19 0.17 0.42 0.92

7 75 2.0 0.043 0.1 0.2 0.34

8 67 50.0 0.039 0.096 0.28 0.42

10 31 1.0 0.016 0.13 0.13 0.2

11 20 1.0 0.0036 0.0043 0.019 0.027

12 2158 0.1 0.87 0.64 21.0 22.0

Table 1: Performance evaluation: This table summarizes timing
information (in milliseconds per simulation step) for examples de-
picted in the figures, as measured on a single-threaded application
running on a 2.66GHz Core 2 Duo. For examples run without col-
lision detection, collision timings are omitted.

simulating tree-like one-dimensional configurations with several T-
junctions. In Figure 12, we show an example of such coupling,
where we additionally used external forces (wind and gravity) to
increase the dramatic effect. Here the mass of the rigid-bodies (but
not necessarily their spatial extension) can be tuned to achieve a
variety of dramatic effects. This example shows the power of cou-
pling rods with rigid-bodies, indicating the attractiveness of this
approach to be used in a wide range of graphics applications, such
as for simulating plant motion, or the skeletal dynamics of rigged
characters.

10 Conclusion

Limitations and future work Our use of the Fast Projection
algorithm leads to energy being dissipated during the constraint-
enforcement step. In many applications, the energy behavior of the
system is of interest, so we would like to explore alternate meth-
ods for enforcing constraints that are both efficient and have good
energy behavior.

The formulation of discrete rods allows us to impose boundary con-
ditions on the material frame at any edge along the rod. We have
presented boundary conditions that arise due to explicitly clamping
certain edges or coupling them to rigid-bodies. We are currently
considering the effect of frictional contact on the material frame
and would like to have an implementation that also allows contact
constraints to dictate boundary conditions for the material frame.

We are also interested in employing adaptivity in our current model
and believe that the ideas of Spillmann and Teschner [2008] pave
the way for this. In addition, an interesting related topic would
be in providing higher-order methods for simulating elastic rods.
The main issues involved would be in defining convergent discrete
operators, such as parallel transport and curvature, on higher-order
elements, and in ensuring the resulting order of accuracy.
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Chapter 7:
Discrete Differential Forms for Computational Modeling

Mathieu Desbrun Eva Kanso∗ Yiying Tong†

Applied Geometry Lab
Caltech‡

1 Motivation

The emergence of computers as an essential tool in scientific re-
search has shaken the very foundations of differential modeling.
Indeed, the deeply-rooted abstraction of smoothness, or differentia-
bility, seems to inherently clash with a computer’s ability of storing
only finite sets of numbers. While there has been a series of com-
putational techniques that proposed discretizations of differential
equations, the geometric structures they are simulating are often
lost in the process.

1.1 The Role of Geometry in Science

Geometry is the study of space and of the properties of shapes in
space. Dating back to Euclid, models of our surroundings have
been formulated using simple, geometric descriptions, formalizing
apparent symmetries and experimental invariants. Consequently,
geometry is at the foundation of many current physical theories:
general relativity, electromagnetism (E&M), gauge theory as well
as solid and fluid mechanics all have strong underlying geometri-
cal structures. Einstein’s theory for instance states that gravitational
field strength is directly proportional to the curvature of space-time.
In other words, the physics of relativity is directly modelled by the
shape of our 4-dimensional world, just as the behavior of soap bub-
bles is modeled by their shapes. Differential geometry is thus, de
facto, the mother tongue of numerous physical and mathematical
theories.

Unfortunately, the inherent geometric nature of such theories is of-
ten obstructed by their formulation in vectorial or tensorial nota-
tions: the traditional use of a coordinate system, in which the defin-
ing equations are expressed, often obscures the underlying struc-
tures by an overwhelming usage of indices. Moreover, such com-
plex expressions entangle the topological and geometrical content
of the model.

1.2 Geometry-based Exterior Calculus

The geometric nature of these models is best expressed and elu-
cidated through the use of the Exterior Calculus of Differential
Forms, first introduced by Cartan [Cartan 1945]. This geometry-
based calculus was further developed and refined over the twentieth
century to become the foundation of modern differential geometry.
The calculus of exterior forms allows one to express differential
and integral equations on smooth and curved spaces in a consis-
tent manner, while revealing the geometrical invariants at play. For
example, the classical operations of gradient, divergence, and curl
as well as the theorems of Green, Gauss and Stokes can all be ex-
pressed concisely in terms of differential forms and an operator on
these forms called the exterior derivative—hinting at the generality
of this approach.

∗Now at the University of Southern California.
†Now at Michigan State University.
‡E-mail: {mathieu|eva|yiying}@caltech.edu

Compared to classical tensorial calculus, this exterior calculus
has several advantages. First, it is often difficult to recognize
the coordinate-independent nature of quantities written in tenso-
rial notation: local and global invariants are hard to notice by
just staring at the indices. On the other hand, invariants are
easily discovered when expressed as differential forms by invok-
ing either Stokes’ theorem, the Poincaré lemma, or by apply-
ing exterior differentiation. Note also that the exterior deriva-
tive of differential forms—the antisymmetric part of derivatives—
is one of the most important parts of differentiation, since it
is invariant under coordinate system change. In fact, Sharpe
states in [Sharpe 1997] that every differential equation may be ex-
pressed in term of the exterior derivative of differential forms.
As a consequence, several recent initiatives have been aimed
at formulating the physical laws in terms of differential forms.
For recent work along these lines, the reader is invited to refer
to [Burke 1985; Abraham et al. 1988; Lovelock and Rund 1993;
Flanders 1990; Morita 2001; Carroll 2003; Frankel 2004] for
books offering a theoretical treatment of various physical theories
using differential forms.

1.3 Differential vs. Discrete Modeling

We have seen that a large amount of our scientific knowledge relies
on a deeply-rooted differential (i.e., smooth) comprehension of the
world. This abstraction of differentiability allows researchers to
model complex physical systems via concise equations. With the
sudden advent of the digital age, it was therefore only natural to
resort to computations based on such differential equations.

However, since digital computers can only manipulate finite sets
of numbers, their capabilities seem to clash with the basic founda-
tions of differential modeling. In order to overcome this hurdle, a
first set of computational techniques (e.g., finite difference or par-
ticle methods) focused on satisfying the continuous equations at a
discrete set of spatial and temporal samples. Unfortunately, focus-
ing on accurately discretizing the local laws often fails to respect
important global structures and invariants. Later methods such as
Finite Elements (FEM), drawing from developments in the calculus
of variations, remedied this inadequacy to some extent by satisfying
local conservation laws on average and preserving some important
invariants. Coupled with a finer ability to deal with arbitrary bound-
aries, FEM became the de facto computational tool for engineers.
Even with significant advances in error control, convergence, and
stability of these finite approximations, the underlying structures of
the simulated continuous systems are often destroyed: a moving
rigid body may gain or loose momentum; or a cavity may exhibit
fictitious eigenmodes in an electromagnetism (E&M) simulation.
Such examples illustrate some of the loss of fidelity that can fol-
low from a standard discretization process, failing to preserve some
fundamental geometric and topological structures of the underlying
continuous models.

The cultural gap between theoretical and applied science commu-
nities may be partially responsible for the current lack of proper
discrete, computational modeling that could mirror and leverage
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the rich developments of its differential counterpart. In particu-
lar, it is striking that the calculus of differential forms has not yet
had an impact on the mainstream computational fields, despite ex-
cellent initial results in E&M [Bossavit 1998] or Lagrangian me-
chanics [Marsden and West 2001]. It should also be noticed that
some basic tools necessary for the definition of a discrete calculus
already exist, probably initiated by Poincaré when he defined his
cell decomposition of smooth manifolds. The study of the struc-
ture of ordered sets or simplices now belongs to the well-studied
branch of mathematics known as Combinatorial Differential Topol-
ogy and Geometry, which is still an active area of research (see,
e.g., [Forman 2003] and [Björner and Welker 1995] and references
therein).

1.4 Calculus ex Geometrica

Given the overwhelming geometric nature of the most fundamental
and successful calculus of these last few centuries, it seems relevant
to approach computations from a geometric standpoint.

One of the key insights that percolated down from the theory of
differential forms is rather simple and intuitive: one needs to recog-
nize that different physical quantities have different properties, and
must be treated accordingly. Fluid mechanics or electromagnetism,
for instance, make heavy use of line integrals, as well as surface
and volume integrals; even physical measurements are performed
as specific local integrations or averages (think flux for magnetic
field, or current for electricity, or pressure for atoms’ collisions).
Pointwise evaluations or approximations for such quantities are not
the appropriate discrete analogs, since the defining geometric prop-
erties of their physical meaning cannot be enforced naturally. In-
stead, one should store and manipulate those quantities at their
geometrically-meaningful location: in other words, we should con-
sider values on vertices, edges, faces, and tetrahedra as proper dis-
crete versions of respectively pointwise functions, line integrals,
surface integrals, and volume integrals: only then will we be able to
manipulate those values without violating the symmetries that the
differential modeling tried to exploit for predictive purposes.

1.5 Similar Endeavors

The need for improved numerics have recently sprung a (still lim-
ited) number of interesting related developments in various fields.
Although we will not try to be exhaustive, we wish to point the
reader to a few of the most successful investigations with the same
“flavor” as our discrete geometry-based calculus, albeit their ap-
proaches are rarely similar to ours. First, the field of Mimetic Dis-
cretizations of Continuum Mechanics, led by Shashkov, Steinberg,
and Hyman [Hyman and Shashkov 1997], started on the premise
that spurious solutions obtained from finite element or finite differ-
ence methods often originate from inconsistent discretizations of
the operators div, curl, and grad, and that addressing this incon-
sistency pays off numerically. Similarly, Computational Electro-
magnetism has also identified the issue of field discretization as the
main reason for spurious modes in numerical results. An excel-
lent treatment of the discretization of the Maxwell’s equations re-
sulted [Bossavit 1998], with a clear relationship to the differential
case. Finally, recent developments in Discrete Lagrangian Mechan-
ics have demonstrated the efficacy of a proper discretization of the
Lagrangian of a dynamical system, rather than the discretization of
its derived Euler-Lagrange equations: with a discrete Lagrangian,
one can ensure that the integration scheme satisfies an exact discrete
least-action principle, preserving all the momenta directly for arbi-
trary orders of accuracy [Marsden and West 2001]. Respecting the
defining geometric properties of both the fields and the governing
equations is a common link between all these recent approaches.

1.6 Advantages of Discrete Differential Modeling

The reader will have most probably understood our bias by now:
we believe that the systematic construction, inspired by Exterior
Calculus, of differential, yet readily discretizable computational
foundations is a crucial ingredient for numerical fidelity. Because
many of the standard tools used in differential geometry have dis-
crete combinatorial analogs, the discrete versions of forms or man-
ifolds will be formally identical to (and should partake of the same
properties as) the continuum models. Additionally, such an ap-
proach should clearly maintain the separation of the topological
(metric-independent) and geometrical (metric-dependent) compo-
nents of the quantities involved, keeping the geometric picture (i.e.,
intrinsic structure) intact.

A discrete differential modeling approach to computations will also
be often much simpler to define and develop than its continuous
counterpart. For example, the discrete notion of a differential form
will be implemented simply as values on mesh elements. Likewise,
the discrete notion of orientation will be more straightforward than
its continuous counterpart: while the differential definition of ori-
entation uses the notion of equivalence class of atlases determined
by the sign of the Jacobian, the orientation of a mesh edge will be
one of two directions; a triangle will be oriented clockwise or coun-
terclockwise; a volume will have a direction as a right-handed helix
or a left-handed one; no notion of atlas (a collection of consistent
coordinate charts on a manifold) will be required.

Figure 1: Typical 2D and 3D meshes: although the David head appears
smooth, its surface is made of a triangle mesh; tetrahedral meshes (such
as this mechanical part, with a cutaway view) are some typical examples of
irregular meshes on which computations are performed. David’s head mesh
is courtesy of Marc Levoy, Stanford.

1.7 Goal of This Chapter

Given these premises, this chapter was written with several pur-
poses in mind. First, we wish to demonstrate that the foundations
on which powerful methods of computations can be built are quite
approachable—and are not as abstract as the reader may fear: the
ideas involved are very intuitive as a side effect of the simplicity of
the underlying geometric principles.

Second, we wish to help bridge the gap between applied fields and
theoretical fields: we have tried to render the theoretical bases of
our exposition accessible to computer scientists, and the concrete
implementation insights understandable by non-specialists. For this
very reason, the reader should not consider this introductory expo-
sition as a definite source of knowledge: it should instead be con-
sidered as a portal to better, more focused work on related subjects.
We only hope that we will ease our readers into foundational con-
cepts that can be undoubtedly and fruitfully applied to all sorts of
computations—be it for graphics or simulation.

With these goals in mind, we will describe the background needed
to develop a principled, geometry-based approach to computational
modeling that gets around the apparent mismatch between differen-
tial and discrete modeling.
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2 Relevance of Forms for Integration

The evaluation of differential quantities on a discrete space (mesh)
is a nontrivial problem. For instance, consider a piecewise-linear
2-dimensional surface embedded in a three-dimensional Euclidean
space, i.e., a triangle mesh. Celebrated quantities such as the Gaus-
sian and mean curvatures are delicate to define on it. More pre-
cisely, the Gaussian curvature can be easily proven to be zero
everywhere except on vertices, where it is a Dirac delta func-
tion. Likewise, the mean curvature can only be defined in the
distributional sense, as a Dirac delta function on edges. How-
ever, through local integrations, one can easily manipulate these
quantities numerically: if a careful choice of non-overlapping re-
gions is made, the delta functions can be properly integrated, ren-
dering the computations relatively simple as shown, for example,
in [Meyer et al. 2002; Hildebrandt and Polthier 2004]. Note that
the process of integration to suppress discontinuity is, in spirit,
equivalent to the idea of weak form used in the Finite Element
method.

This idea of integrated value has predated in some cases the equiva-
lent differential statements: for instance, it was long known that the
genus of a surface can be calculated through a cell decomposition
of the surface via the Euler characteristic. The actual Gauss-Bonnet
theorem was, however, derived later on. Now, if one tries to dis-
cretize the Gaussian curvature of a piecewise-linear surface in an
arbitrary way, it is not likely that its integral over the surface equals
the desired Euler characteristic, while its discrete version, defined
on vertices (or, more precisely, on the dual of each vertex), naturally
preserves this topological invariant.

2.1 From Integration to Differential Forms

Integration is obviously a linear operation, since for any disjoint
sets A and B, ∫

A∪B

=

∫

A

+

∫

B

.

Moreover, the integration of a smooth function over a subset of
measure zero is always zero; for example, an area integral of (a
lower dimensional object such as) a curve or a point is equal to zero.
Finally, integration is objective (i.e., relevant) only if its evaluation
is invariant under change of coordinate systems. These three prop-
erties combined directly imply that the integrand (i.e., the whole
expression after the integral sign) has to be antisymmetric. That is,
the basic building blocks of any type of integration are differential
forms. Chances are, the reader is already very well acquainted with
forms, maybe without even knowing it.

2.1.1 An Intuitive Definition

A differential form (also denoted as exterior1 differential form) is,
informally, an integrand, i.e., a quantity that can be integrated. It
is the dx in

∫
dx and the dx dy in

∫∫
dx dy. More precisely,

consider a smooth function F (x) over an interval in R. Now, define
f(x) to be its derivative, that is,

f(x) =
dF

dx
,

Rewriting this last equation (using slightly abusive notations for
simplicity) yields dF = f(x)dx, which leads to:

∫ b

a

dF =

∫ b

a

f(x)dx = F (b)− F (a). (1)

1The word “exterior” is used as the exterior algebra is basically built out
of an outer product.

This last equation is known as the Newton-Leibnitz formula, or
the first fundamental theorem of calculus. The integrand f(x)dx
is called a 1-form, because it can only be integrated over any 1-
dimensional (1D) real interval. Similarly, for a function G(x, y, z),
we have:

dG =
∂G

∂x
dx +

∂G

∂y
dy +

∂G

∂z
dz ,

which can be integrated over any 1D curve in R3, and is also a 1-
form. More generally, a k-form can be described as an entity ready
(or designed, if you prefer) to be integrated on a kD (sub)region.
Note that forms are valued zero on (sub)regions that are of higher
or lower order dimension than the original space; for example, 4-
forms are zero on R3. These differential forms are extensively used
in mathematics, physics and engineering, as we already
hinted at the fact in Section 1.4 that most of our mea-
surements of the world are of integral nature: even dig-
ital pictures are made out of local area integrals of the
incident light over each of the sensors of a camera to
provide a set of values at each pixel on the final image
(see inset). The importance of this notion of forms in science is
also evidenced by the fact that operations like gradient, divergence,
and curl can all be expressed in terms of forms only, as well as
fundamental theorems like Green’s or Stokes.

2.1.2 A Formal Definition

For concreteness, consider the n-dimensional Euclidean space Rn,
n ∈ N and let M be an open region M ⊂ Rn; M is also called
an n-manifold. The vector space TxM consists of all the (tangent)
vectors at a point x ∈ M and can be identified with Rn itself. A
k-form ωk is a rank-k, anti-symmetric, tensor field over M. That
is, at each point x ∈M, it is a multi-linear map that takes k tangent
vectors as input and returns a real number:

ωk : TxM . . .× TxM −→ R

which changes sign for odd permutations of the variables (hence
the term antisymmetric). Any k-form naturally induces a k-form on
a submanifold, through restriction of the linear map to the domain
that is the product of tangent spaces of the submanifold.

Comments on the Notion of Pseudo-forms There is a
closely related concept named pseudo-form. Pseudo-forms change
sign when we change the orientation of coordinate systems, just like
pseudo-vectors. As a result, the integration of a pseudo-form does
not change sign when the orientation of the manifold is changed.
Unlike k-forms, a pseudo-k-form induces a pseudo-k-form on a
submanifold only if a transverse direction is given. For example,
fluid flux is sometimes called a pseudo-2-form: indeed, given a
transverse direction, we know how much flux is going through a
piece of surface; it does not depend on the orientation of the sur-
face itself. Vorticity is, however, a true 2-form: given an orientation
of the surface, the integration gives us the circulation around that
surface boundary induced by the surface orientation. It does not
depend on the transverse direction of the surface. But if we have
an orientation of the ambient space, we can always associate trans-
verse direction with internal orientation of the submanifold. Thus,
in our case, we may treat pseudo-forms simply as forms because we
can consistently choose a representative from the equivalence class.

2.2 The Differential Structure

Differential forms are the building blocks of a whole calculus. To
manipulate these basic blocks, Exterior Calculus defines seven op-
erators:
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¦ d: the exterior derivative, that extends the notion of the differ-
ential of a function to differential forms;

¦ ?: the Hodge star, that transforms k-forms into (n-k)-forms;
¦ ∧: the wedge product, that extends the notion of exterior prod-

uct to forms;
¦ ] and [: the sharp and flat operators, that, given a metric, trans-

form a 1-form into a vector and vice-versa;
¦ iX : the interior product with respect to a vector field X (also

called contraction operator), a concept dual to the exterior prod-
uct;

¦ LX : the Lie derivative with respect to a vector field X , that
extends the notion of directional derivative.

In this chapter, we will restrict our discussions to the first three op-
erators, to provide the most basic tools necessary in computational
modeling.

2.3 A Taste of Exterior Calculus in R3

To give the reader a taste of the relative simplicity of Exterior Cal-
culus, we provide a list of equivalences (in the continuous world!)
between traditional operations and their Exterior Calculus counter-
part in the special case of R3. We will suppose that we have the
usual Euclidean metric. Then, forms are actually quite simple to
conceive:

0-form ⇔ scalar field
1-form ⇔ vector field
2-form ⇔ vector field
3-form ⇔ scalar field

To be clear, we will add a superscript on the forms to indicate their
rank. Then applying forms to vector fields amounts to:

1-form: u1(v) ⇔ u · v.
2-form: u2(v, w) ⇔ u · (v × w).
3-form: f3(u, v, w) ⇔ fu · (v × w).

Furthermore, the usual operations like gradient, curl, divergence
and cross product can all be expressed in terms of the basic exterior
calculus operators. For example:

d0f = ∇f , d1u = ∇× u, d2u = ∇ · u;
?0f = f, ?1u = u, ?2u = u, ?3f = f ;
?0d2 ?1 u1 = ∇·u, ?1d1 ?2 u2 = ∇×u, ?2d0 ?3 f = ∇f ;
f0 ∧u = fu, u1 ∧ v1 = u× v, u1 ∧ v2 = u2 ∧ v1 = u · v;
ivu1 = u · v, ivu2 = u× v, ivf3 = fv.

Now that we have established the relevance of differential forms
even in the most basic vector operations, time has come to turn our
attention to make this concept of forms readily usable for computa-
tional purposes.

3 Discrete Differential Forms

Finding a discrete counterpart to the notion of differential forms is
a delicate matter. If one was to represent differential forms using
their coordinate values and approximate the exterior derivative us-
ing finite differences, basic theorems such as Stokes theorem would
not hold numerically. The main objective of this section is there-
fore to present a proper discretization of the forms on what is known
as simplicial complexes. We will show how this discrete geomet-
ric structure, well suited for computational purposes, is designed to
preserve all the fundamental differential properties. For simplicity,
we restrict the discussion to forms on 2D surfaces or 3D regions
embedded in R3, but the construction is applicable to general man-
ifolds in arbitrary spaces. In fact, the only necessary assumption is
that the embedding space must be a vector space, a natural condi-
tion in practice.

3.1 Simplicial Complexes and Discrete Manifolds

For the interested reader, the notions we introduce in this section
are defined formally in much more details (for the general case
of k-dimensional spaces) in references such as [Munkres 1984] or
[Hatcher 2004].

Figure 2: A 1-simplex is a line segment, the convex hull of two points. A
2-simplex is a triangle, i.e., the convex hull of three distinct points. A 3-
simplex is a tetrahedron, as it is the convex hull of four points.

3.1.1 Notion of Simplex

A k-simplex is the generic term to describe the simplest mesh el-
ement of dimension k—hence the name. By way of motivation,
consider a three-dimensional mesh in space. This mesh is made of
a series of adjacent tetrahedra (denoted tets for simplicity through-
out). The vertices of the tets are said to form a 0-simplex. Similarly,
the line segments or edges form a 1-simplex, the triangles or faces
form a 2-simplex, and the tets a 3-simplex. Note that we can define
these simplices in a top-down manner too: faces (2-simplex) can be
thought of as boundaries of tets (3-simplices), edges (1-simplices)
as boundaries of faces, and vertices (0-simplices) as boundaries of
edges.

The definition of a simplex can be made more abstract as a series
of k-tuples (referring to the vertices they are built upon). However,
for the type of applications that we are targeting in this chapter, we
will often not make any distinction between an abstract simplex and
its topological realization (connectivity) or geometrical realization
(positions in space) .

Formally, a k-simplex σk is the non-degenerate convex hull of
k+1 geometrically distinct points v0, . . . vk ∈ Rn with n ≥ k.
In other words, it is the intersection of all convex sets containing
(v0, . . . vk); namely:

σk = {x ∈ Rn|x =

k∑
i=0

αi vi with αi ≥ 0 and

k∑
i=0

αi = 1}.

The entities v0, . . . vk are called the vertices and k is called the
dimension of the k-simplex., which we will denote as:

σk = {v0v1...vk} .

3.1.2 Orientation of a Simplex

Note that all orderings of the k + 1 vertices of a k-simplex can
be divided into two equivalent classes, i.e., two orderings differ-
ing by an even permutation. Such a class of orderings is called an
orientation. In the present work, we always assume that local ori-
entations are given for each simplex; that is, each element of the
mesh has been given a particular orientation. For example, an edge
σ1 = {v0v1} in Figure 2 has an arrow indicating its default ori-
entation. If the opposite orientation is needed, we will denote it as
{v1v0}, or, equivalently, by −{v0v1}. For more details and exam-
ples, the reader is referred to [Munkres 1984; Hirani 2003].

3.1.3 Boundary of a Simplex

Any (k-1)-simplex spanned by a subset of {v0, . . . vk} is called a
(k-1)-face of σk. That is, a (k-1)-face is simply a (k-1)-simplex
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whose k vertices are all from the k+1 vertices of the k-simplex.
The union of the (k-1)-faces is what is called the boundary of the
k-simplex. One should be careful here: because of the default ori-
entation of the simplices, the formal signed sum of the (k-1)-faces
defines the boundary of the k-simplex. Therefore, the boundary
operator takes a k-simplex and gives the sum of all its (k-1)-faces
with 1 or −1 as coefficients depending on whether their respective
orientations match or not, see Figure 4.

Figure 3: The boundary operator ∂ applied to a triangle (a 2-simplex) is
equal to the signed sum of the edges (i.e., the 1-faces of the 2-simplex).

To remove possible mistakes in orientation, we can define the
boundary operator as follows:

∂{v0v1...vk} =

k∑
j=0

(−1)j{v0, ..., v̂j , ..., vk}, (2)

where v̂j indicates that vj is missing from the sequence, see Fig-
ure 3. Clearly, each k-simplex has k+1 (k-1)-faces. For this state-
ment to be valid even for k = 0, the empty set ∅ is usually defined
as a (−1)-simplex face of every 0-simplex. The reader is invited to
verify this definition on the triangle {v0, v1, v2} in Figure 3:

∂{v0, v1, v2} = {v1, v2} − {v0, v2}+ {v0, v1}

Figure 4: Boundary operator applied to a triangle (left), and a tetrahedron
(right). Orientations of the simplices are indicated with arrows.

3.1.4 Simplicial Complex

A simplicial complex is a collection K of simplices, which satisfies
the following two simple conditions:

¦ every face of each simplex in K is in K;
¦ the intersection of any two simplices in K is either empty, or an

entire common face.

Computer graphics makes heavy use of what is called realizations
of simplicial complexes. Loosely speaking, a realization of a sim-
plicial complex is an embedding of this complex into the underlying
space Rn. Triangle meshes in 2D and tet meshes in 3D are exam-
ples of such simplicial complexes (see Figure 1). Notice that polyg-
onal meshes can be easily triangulated, thus can be easily turned
into simplicial complexes. One can also use the notion of cell com-
plex by allowing the elements of K to be non-simplicial; we will
restrict our explanations to the simpler case of simplicial complexes
for simplicity.

3.1.5 Discrete Manifolds

An n-dimensional discrete manifold M is an n-dimensional sim-
plicial complex that satisfies the following condition: for each
simplex, the union of all the incident n-simplices forms an n-
dimensional ball (i.e., a disk in 2D, a ball in 3D, etc), or half a
ball if the simplex is on the boundary. As a consequence, each (n-
1)-simplex has exactly two adjacent n-simplices—or only one if it
is on a boundary.

Basically, the notion of discrete manifold corresponds to the usual
Computer Graphics acceptation of “manifold mesh”. For example
in 2D, discrete manifolds cannot have isolated edges (also called
sticks or hanging edges) or isolated vertices, and each of their edges
is adjacent to 2 triangles (except for the boundary; in that case, the
edge is adjacent to only one triangle). A surface mesh in 3D cannot
have a “fin”, i.e., an edge with more than two adjacent triangles. To
put it differently, infinitesimally-small, imaginary inhabitants of a
n-dimensional discrete manifolds would consider themselves living
in Rn as any small neighborhood of this manifold is isomorphic to
Rn.

Figure 5: (a) A simplicial complex consisting of all vertices {v0, v1, v2, v3}
and edges {e0, e1, e2, e3, e4}. This simplicial complex is not a discrete
manifold because the neighborhoods of the vertices v1 and v2 are not 1D
balls. (b) If we add the triangles f0 and f1 to the simplicial complex, it
becomes a 2-manifold with one boundary.

3.2 Notion of Chains

We have already encountered the notion of chain, without mention-
ing it. Recall that the boundary operator takes each k-simplex and
gives the signed sum of all its (k-1)-faces. We say that the boundary
of a k-simplex produces a (k-1)-chain. The following definition is
more precise and general.

3.2.1 Definition

A k-chain of an oriented simplicial complex K is a set of values,
one for each k-simplex of K. That is, a k-chain c can then be
thought of as a linear combination of all the k-simplices in K:

c =
∑
σ∈K

c(σ) · σ, (3)

where c(σ) ∈ R. We will denote the group of all k-chains as Ck.

3.2.2 Implementation of Chains

Let the set of all k-simplices in K be denoted Kk, and let its car-
dinality be denoted as |Kk|. A k-chain can simply be stored as a
vector (or array) of dimension |Kk|, i.e., one number for each k-
simplex σk ∈ Kk.

3.2.3 Boundary Operator on Chains

We mentioned that the boundary operator ∂ was returning a particu-
lar type of chain, namely, a chain with coefficients equal to either 0,
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1, or −1. Therefore, it should not be surprising that we can extend
the notion of boundary to act also on k-chains, simply by linearity:

∂
∑

k

ckσk =
∑

k

ck∂σk.

That is, from one set of values assigned to all simplices of a com-

Figure 6: (a) An example of 1-chain being the boundary of a face (2-
simplex); (b) a second example of 1-chain with 4 non-zero coefficients.

plex, one can deduce another set of values derived by weighting the
boundaries of each simplex by the original value stored on it. This
operation is very natural, and can thus be implemented easily as
explained next.

3.2.4 Implementation of the Boundary Operator

Since the boundary operator is a linear mapping from the space of
k-simplices to the space of (k-1)-simplices, it can simply be rep-
resented by a matrix of dimension |Kk−1| × |Kk|. The reader can
convince herself that this matrix is sparse, as only immediate neigh-
bors are involved in the boundary operator. Similarly, this matrix
contains only the values 0, 1, and −1. Notice than in 3D, there are
three non-trivial boundary operators ∂k (∂1 is the boundary oper-
ator on edges, ∂2 on triangles, ∂3 on tets). However, the operator
needed for a particular operation is obvious from the type of the
argument: if the boundary of a tet is needed, the operator ∂3 is the
only one that makes sense to apply; in other words, the boundary of
a k-simplex σk is found by invoking ∂kσk. Thanks to this context-
dependence, we can simplify the notation and remove the subscript
when there is no ambiguity.

3.3 Notion of Cochains

A k-cochain ω is the dual of a k-chain, that is to say, ω is a linear
mapping that takes k-chains to R. One writes:

ω : Ck → R
c → ω(c), (4)

which reads as: a k-cochain ω operates on a k-chain c to give a
scalar in R. Since a chain is a linear combination of simplices, a
cochain returns a linear combination of the values of that cochain
on each simplex involved.

Clearly, a co-chain also corresponds to one value per simplex (since
all the k-simplices form a basis for the vector space Ck, and we
only need to know the mapping of vectors in this basis to determine
a linear mapping), and hence the notion of duality of chains and
co-chains is appropriate. But contrary to a chain, a k-cochain is
evaluated on each simplex of the dimension k. In other words, a
k-cochain can be thought of as a field that can be evaluated on each
k-simplex of an oriented simplicial complex K.

3.3.1 Implementation of Cochains

The numerical representation of cochains follows from that of
chains by duality. Recall that a k-chain can be represented as a
vector ck of length equal to the number of k-simplices in M. Sim-
ilarly, one may represent ω by a vector ωk of the same size as ck.

Now, remember that ω operates on c to give a scalar in R. The
linear operation ω(c) translates into an inner product ωk · ck. More
specifically, one may continue to think of ck as a column vector so
that the R-valued linear mapping ω can be represented by a row
vector (ωk)t, and ω(c) becomes simply the matrix multiplication
of the row vector (ωk)t with the column vector ck. The evaluation
of a cochain is therefore trivial to implement.

3.4 Discrete Forms as Co-Chains

The attentive reader will have noticed by now: k-cochains are dis-
crete analogs to differential forms. Indeed, a continuous k-form
was defined as a linear mapping from k-dimensional sets to R, as
we can only integrate a k-form on a k-(sub)manifold. Note now
that a kD set, when one has only a mesh to work with, is simply
a chain. And a linear mapping from a chain to a real number is
what we called a cochain: a cochain is therefore a natural discrete
counterpart of a form.

For instance a 0-form can be evaluated at each point, a 1-form can
be evaluated on each curve, a 2-form can be evaluated on each sur-
face, etc. Now if we restrict integration to take place only on the
k-submanifold which is the sum of the k-simplices in the triangu-
lation, we get a k-cochain; thus k-cochains are a discretization of
k-forms. One can further map a continuous k-form to a k-cochain.
To do this, first integrate the k-form on each k-simplex and assign
the resulting value to that simplex to obtain a k-cochain on the k-
simplicial complex. This k-cochain is a discrete representation of
the original k-form.

3.4.1 Evaluation of a Form on a Chain

We can now naturally extend the notion of evaluation of a differen-
tial form ω on an arbitrary chain simply by linearity:

∫
∑

i ciσi

ω =
∑

i

ci

∫

σi

ω. (5)

As mentioned above, the integration of ω on each k-simplex σk

provides a discretization of ω or, in other words, a mapping from
the k-form ω to a k-cochain represented by:

ω[i] =

∫

σi

ω.

However convenient this chain/cochain standpoint is, in practical
applications, one often needs a point-wise value for a k-form or to
evaluate the integration on a particular k-submanifold. How do we
get these values from a k-cochain? We will cover this issue of form
interpolation in Section 6.

4 Operations on Chains and Cochains

4.1 Discrete Exterior Derivative

In the present discrete setting where the discrete differential forms
are defined as cochains, defining a discrete exterior derivative can
be done very elegantly: Stokes’ theorem, mentioned early on in
Section 2, can be used to define the exterior derivative d. Tra-
ditionally, this theorem states a vector identity equivalent to the
well-known curl, divergence, Green’s, and Ostrogradsky’s theo-
rems. Written in terms of forms, the identity becomes quite sim-
ple: it states that d applied to an arbitrary form ω is evaluated on an
arbitrary simplex σ as follows:

∫

σ

dω =

∫

∂σ

ω. (6)
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You surely recognize the usual property that an integral over a k-
dimensional set is turned into a boundary integral (i.e., over a set of
dimension k-1). With this simple equation relating the evaluation
of dω on a simplex σ to the evaluation of ω on the boundary of this
simplex, the exterior derivative is readily defined: each time you
encounter an exterior derivative of a form, replace any evaluation
over a simplex σ by a direct evaluation of the form itself over the
boundary of σ. Obviously, Stokes’ theorem will be enforced by
construction!

4.1.1 Coboundary Operator

The operator d is called the adjoint of the boundary operator ∂: if
we denote the integral sign as a pairing, i.e., with the convention that∫

σ
ω = [ω, σ], then applying d on the left hand side of this operator

is equivalent to applying ∂ on the right hand: [dω, σ] = [ω, ∂σ].
For this very reason, d is sometimes called the coboundary operator.

Finally, by linearity of integration, we can write a more general
expression of Stokes’ theorem, now extended to arbitrary chains as
follows:

∫

∑
i ciσi

dω =

∫

∂
(∑

i ciσi

)
ω =

∫

∑
i ci∂σi

ω =
∑

i

ci

∫

∂σi

ω

Consider the example shown in Figure 7. The discrete exterior
derivative of the 1-form, defined as numbers on edges, is a 2-
form represented by numbers on oriented faces. The orientation
of the 1-forms may be opposite to that induced on the edges by
the orientation of the faces. In this case, the values on the edges
change sign. For instance, the 2-form associated with the d of the
1-forms surrounding the oriented shaded triangle takes the value
ω = 2− 1− 0.75 = 0.25.

Figure 7: Given a 1-form as numbers on oriented edges, its discrete exte-
rior derivative is a 2-form. In particular, this 2-form is valued 0.25 on the
oriented shaded triangle.

4.1.2 Implementation of Exterior Derivative

Since we use vectors of dimension |Kk| to represent a k-cochain,
the operator d can be represented by a matrix of dimension
|Kk+1| × |Kk|. Furthermore, this matrix has a trivial expression.
Indeed, using the matrix notation introduced earlier, we have:

∫

∂c

ω = ωt(∂c) = (ωt∂)c = (∂tω)tc =

∫

c

dω.

Thus, the matrix d is simply equal to ∂t. This should not come as a
surprise, since we previously discussed that d is simply the adjoint
of ∂. Note that care should be used when boundaries are present.
However, and without digging too much into the details, it turns
out that even for discrete manifolds with boundaries, the previous
statement is valid. Implementing the exterior derivative while pre-
serving Stokes’ theorem is therefore a trivial matter in practice. No-
tice that just like for the boundary operator, there is actually more

than one matrix for the exterior derivative operator: there is one per
simplex dimension. But again, the context is sufficient to actually
know which matrix is needed. A brute force approach that gets rid
of these multiple matrices is to use a notion of super-chain, i.e., a
vector storing all simplices, ordered from dimension 0 to the di-
mension of the space: in this case, the exterior derivative can be
defined as a single, large sparse matrix that contains these previ-
ous matrices as blocks along the diagonal. We will not use this
approach, as it makes the exposition less intuitive in general.

4.2 Exact/Closed Forms and Poincaré Lemma

A k-form ω is called exact if there is a (k-1)-form α such that ω =
dα, and it is called closed if dω = 0.

Figure 8: (a) The 2-form on the oriented shaded triangles defined by the
exterior derivative d of the 1-form on the oriented edges is called an exact 2-
form; (b) The 1-form on the oriented edges whose derivative d is identically
zero is called a closed 1-form.

It is worth noting here that every exact form is closed, as will be
seen in Section 4.3. Moreover, it is well-known in the continuous
setting that a closed form on a smooth contractible (sub)-manifold
is locally exact (to be more accurate: exact over any disc-like re-
gion). This result is called the Poincaré lemma. The discrete ana-
logue to this lemma can be stated as follows: given a closed k-
cochain ω on a star-shaped complex, that is to say, dω = 0, there
exits a (k-1)-cochain α such that ω = dα. For a formal statement
and proof of this discrete version, see [Desbrun et al. 2004].

4.3 Introducing the deRham Complex

The boundary of a boundary is the empty set. That is, the boundary
operator applied twice to a k-simplex is zero. Indeed, it is easy to
verify that ∂ ∂σk = 0, since each (k-2)-simplex will appear exactly
twice in this chain with different signs and, hence, cancel out (try
it at home!). From the linearity of ∂, one can readily conclude that
the property ∂ ∂ = 0 is true for all k-chains since the k-simplices
form a basis. Similarly, one has that the discrete exterior derivative
satisfies d d = ∂t∂t = (∂ ∂)t = 0, analogously to the exterior
derivative of differential forms (notice that this last equality corre-
sponds to the equality of mixed partial derivatives, which in turn is
responsible for identities like ∇×∇ = 0 and ∇ ·∇× = 0 in R3).

00

Figure 9: The chain complex of a tetrahedron with the boundary operator:
from the tet, to its triangles, to their edges, and to their vertices.

4.3.1 Chain Complex

In general, a chain complex is a sequence of linear spaces, con-
nected with a linear operator D that satisfies the property D D = 0.
Hence, the boundary operator ∂ (resp., the coboundary operator d)
makes the spaces of chains (resp., cochains) into a chain complex,
as shown in Figures 9 and 13.

When the spaces involved are the spaces of differential forms, and
the operator is the exterior derivative d, this chain complex is called
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the deRham complex. By analogy, the chain complex for the spaces
of discrete forms and for the coboundary operator is called the dis-
crete deRham complex (or sometimes, the cochain complex).

4.3.2 Examples

Consider the 2D simplicial complex in Figure 10(a) and choose the
oriented basis of the i-dimensional simplices (i = 0 for vertices,
i = 1 for edges and i = 2 for the face) as suggested by the ordering
in the figure.

Figure 10: Three examples of simplicial complexes. The first one is not
manifold. The two others are.

One gets ∂(f0) = e0 − e4 − e3, which can be identified with the
vector (1, 0, 0,−1,−1) representing the coefficient in front of each
simplex. By repeating similar calculations for all simplices, one can
readily conclude that the boundary operator ∂ is given by:

∂2 =

(
1
0
0
−1
−1

)
, ∂1 =

(−1 0 0 −1 0
1 −1 0 0 1
0 1 1 0 0
0 0 −1 1 −1
0 0 0 0 0

)
,

That is, the chain complex under the boundary operator ∂ can be
written as:

0 −→ C2
∂2−→ C1

∂1−→ C0 −→ 0

where Ci, i = 0, 1, 2, denote the spaces of i-chains.

Consider now the domain to be the mesh shown in Figure 10(b).
The exterior derivative operator, or the coboundary operator, can be
expressed as:

d0 =

(−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1
0 −1 0 1

)
, d1 =

(
1 0 0 1 1
0 1 1 0 −1

)
.

It is worth noting that, since d is adjoint to ∂ by definition, the
coboundary operator d induces a cochain complex:

0 ←− C2 d1

←− C1 d0

←− C0 ←− 0

where Ci, i = 0, 1, 2, denote the spaces of i-cochains.

Finally, suppose the domain is the tetrahedron in Figure 10(c), then
the exterior derivative operators are:

d0 =



−1 1 0 0
0 −1 1 0
−1 0 1 0
1 0 0 −1
0 1 0 −1
0 0 −1 1


 , d1 =

(
1 1 −1 0 0 0
1 0 0 1 −1 0
0 1 0 0 1 1
0 0 1 1 0 1

)
, d2 =

(
−1 1 1 −1

)
.

4.4 Notion of Homology and Cohomology

Homology is a concept dating back to Poincaré that focuses on
studying the topological properties of a space. Loosely speaking,
homology does so by counting the number of holes. In our case,
since we assume that our space is a simplicial complex (i.e., triangu-
lated), we will only deal with simplicial homology, a simpler, more
straightforward type of homology that can be seen as a discrete ver-
sion of the continuous definition (in other words, it is equivalent to
the continuous one if the domain is triangulated). As we are about
to see, the notion of discrete forms is intimately linked with these
topological notions. In fact, we will see that (co)homology is the
study of the relationship between closed and exact (co)chains.

4.4.1 Simplicial Homology

A fundamental problem in topology is that of determining, for two
spaces, whether they are topologically equivalent. That is, we wish
to know if one space can be morphed into the other without having
to puncture it. For instance, a sphere-shaped tet mesh is not topo-
logically equivalent to a torus-shaped tet mesh as one cannot alter
the sphere-shaped mesh (i.e., deform, refine, or coarsen it locally)
to make it look like a torus.

The key idea of homology is to define invariants (i.e., quantities
that cannot change by continuous deformation) that characterize
topological spaces. The simplest invariant is the number of con-
nected components that a simplicial complex has: obviously, two
simplicial complexes with different numbers of pieces cannot be
continuously deformed into each other! Roughly speaking, ho-
mology groups are an extension of this idea to define more sub-
tle invariants than the number of connected components. In gen-
eral, one can say that homology is a way to define the notion of
holes/voids/tunnels/components of an object in any dimension.

Cycles and their Equivalence Classes Generalizing the
previous example to other invariants is elegantly done using the no-
tion of cycles. A cycle is simply a closed k-chain; that is, a linear
combination of k-simplices so that the boundary of this chain (see
Section 3.2) is the empty set. Any set of vertices is a closed chain;
any set of 1D loops are too; etc. Equivalently, a k-cycle is any
k-chain that belongs to Ker ∂k, by definition.

On this set of all k-cycles, one can define equivalence classes. We
will say that a k-cycle is homologous to another k-cycle (i.e., in
the same equivalence class than the other) when these two chains
differ by a boundary of a (k+1)-chain (i.e., by an exact chain). No-
tice that this exact chain is, by definition (see Section 4.2), in the
image of ∂k+1, i.e., Im ∂k+1. To get a better understanding of
this notion of equivalence class, the reader is invited to look at Fig-
ure 11: the 1-chains L1 and L3 are part of the same equivalence
class as their difference is indeed the boundary of a well-defined
2D chain—a rubber-band shape in this case. Notice that as a conse-
quence, L1 can be deformed into L3 without having to tear the loop
apart. However, L2 is not of this class, and thus cannot be deformed
into L3; there’s no 2-chain that corresponds to their difference.

4.4.2 Homology Groups

Let us now use these definition on the simple case of the 0th ho-
mology group H0.

Homology Group H0 The boundary of any vertex is ∅. Thus,
any linear combination of vertices is a 0-cycle by definition. Now
if two vertices v0 and v1 are connected by an edge, v1 − v0 (i.e.,
the difference of two cycles) is the boundary of this edge. Thus, by
our previous definition, two vertices linked by an edge are homolo-
gous as their difference is the boundary of this edge. By the same
reasoning, any two vertices taken from the same connected compo-
nent are, also, homologous, since there exists a chain of edges in
between. Consequently, we can pick only one vertex per connected
component to form a basis of this homology group. Its dimension,
β0, is therefore simply the number of connected components. The
basis elements of that group are called generators, since they gen-
erate the whole homology group.

Homology Group H1 Let us proceed similarly for the 1st ho-
mology class: we now have to consider 1-cycles (linear combina-
tions of 1D loops). Again, one can easily conceive that there are
different types of such cycles, and it is therefore possible to separate
all possible cycles into different equivalence classes. For instance,
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the loop L1 in Figure 11 is topologically distinct from the curve
L2: one is around a hole and the other is not, so the difference be-
tween the two is not the boundary of a 2-chain. Conversely, L1 is in
the same class as curve L3 since they differ by one connected area.
Thus, in this figure, the 1st homology group is a 1-dimensional
group, and L1 (or L3, equivalently) is its unique generator. The
reader is invited to apply this simple idea on the triangulated torus,
to find two loops as generators of H1.

Figure 11: Example of Homology Classes: the cycles L1 and L2 are topo-
logically distinct as one encloses a hole while the other does not; L1 and
L3 are however in the same equivalence class.

Formal Definition of Homology Groups We are now ready
to generalize this construction to all homology groups. Remember
that we have a series of k-chain spaces:

Cn
∂n−→ Cn−1 . . .

∂2−→ C1
∂1−→ C0

with the property that ∂ ∂ is the empty set. This directly implies
that the image of Cj is always in the kernel of ∂j−1—such a series
is called a chain complex. Now, the homology groups {Hk}k=0..n

of a chain complex based on ∂ are defined as the following quotient
spaces:

Hk = Ker ∂k/Im ∂k+1.

The reader is invited to check that this definition is exactly what we
did for the 0th and 1st homology groups—and it is now valid for
any order: indeed, we use the fact that closed chains (belonging to
Ker ∂) are homologous iff their difference is in Im ∂, and this is
exactly what this quotient vector space is.

Example Consider the example in Figure 10(a). Geometrically,
H0 is nontrivial because the simplicial complex σ is disconnected
(it is easy to see {v0, v4} form a basis forH0), whileH1 is nontriv-
ial since the cycle (e1−e2 +e4) is not the boundary of any 2-chain
of σ ({(e1 − e2 + e4)} is indeed a basis for this 1D space H1).

Link to Betti Numbers The dimension of the k-th cohomology
group is called k-th Betti number; βk = dimHk. For a 3D simpli-
cial complex embedded in R3, these numbers have very straightfor-
ward meanings. β0 is the number of connected components, β1 is
the number of tunnels, β2 is the number of voids, while β3 is the
number of 4D holes, which is 0 in the Euclidean (flat 3D) case. Fi-
nally, note that

∑
k=0..n(−1)kβk, where βk is the k-th Betti num-

ber, gives us the well-known Euler characteristic.

4.4.3 Cohomology Groups

The definition of homology groups is much more general than what
we just reviewed. In fact, the reader can take the formal definition
in the previous section, replace all occurrences of chain by cochain,
of ∂ by d, and reverse the direction of the operator between spaces
(see Section 4.3.2): this will also define equivalence classes. Be-
cause cochains are dual of chains, and d is the adjoint of ∂, these
equivalence classes define what are actually denoted as cohomol-
ogy groups: the cohomology groups of the deRham complex for the
coboundary operator are simply the quotient spaces Ker d/Im d.
Finally, note that the homology and cohomology groups are not
only dual notions, but they are also isomorphic; therefore, the car-
dinalities of their bases are equal.

4.4.4 Calculation of the Cohomology Basis

One usual way to calculate a cohomology basis is to calculate a
Smith Normal Form to obtain the homology basis first (possibly
using progressive meshes [Gu and Yau 2003]), with a worst case
complexity of O(n3), and then find the corresponding cohomology
basis derived from this homology basis. We provide an alternative
method here with worst case complexity also equal to O(n3). The
advantage of our method is that it directly calculates the cohomol-
ogy basis.

Our algorithm is a modified version of an algorithm in
[Edelsbrunner et al. 2000], although they did not use it for the same
purpose2. We will use row#(.) to refer to the row number of the
last non-zero coefficient in a particular column.

The procedure is as follows:

1. Transform dk (size |Kk+1| × |Kk|) in the following manner:

// For each column of dk

for(i = 0; i < |Kk|; i++)
// Reduce column i

repeat
p← row#(dk[i])
find j < i such as p==row#(dk[j])
make dk[i][p] zero by adding to dk[i] a multiple of dk[j]

until j not found or column i is all zeros

In the end of this procedure, we get Dk = dk Nk, whose non-
zero column vectors are linearly independent of each other
and with different row#(.), and Nk is a non-singular upper
triangular matrix.

2. Construct Kk = {Nk
i | Dk

i = 0} (where Nk
i and Dk

i are
column vectors of matrices Nk and Dk respectively).
Kk is a basis for kernel of dk.

3. Construct Ik = {Nk
i |∃j such that i = row#(D

(k−1)
j )}

4. Construct P k = Kk − Ik

P k is a basis of the cohomology.

Short proof of correctness: First, notice that the Nk
i ’s are all lin-

early independent because Nk is nonsingular. For any non-zero
linear combination of vectors in P k , row#(.) of it (say i) equals
the max of row#(.) of vectors with non-zero coefficients. But i

is not row#(.) of any D
(k−1)
i (and thus any linear combination of

them) by definition of P k. Therefore, we know that the linear com-
bination is not in the image space of dk−1 (since the range of dk−1

is the same as Dk−1, by construction). Thus, P k spans a subspace
of Ker(dk)/Im(dk−1) of dimension Card(P k).

One can also prove that Ik is a subset of Kk. Pick such an Nk
i with

i = row#(D
(k−1)
j ). We have: dk D

(k−1)
j = 0 (since dk ◦dk−1 =

0). Now row#(τ ≡ (Nk)−1 d(k−1)
j) = i (the inverse of an up-

per triangular matrix is also an upper triangular matrix). So conse-
quently, 0 = dk d(k−1)

j = Dk(Nk)−1 d(k−1)
j = Dkτ means

that Dk
i = 0 because the columns of Dk are linearly indepen-

dent or 0. Therefore, Card(P k) = Card(Kk) − Card(Ik) =

dim(Ker(dk)) − dim(Im(d(k−1))), and we conclude that, P k

spans Ker(dk)/Im(dk−1) as expected.

2Thanks to David Cohen-Steiner for pointing us to the similarities
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4.4.5 Example

Consider the 2D simplicial complex in Figure 10(a) again. We will
show an example of running the same procedure described above
to compute a homology basis. The only difference with the previ-
ous algorithm is that we use ∂ instead of d, since we compute the
homology basis instead of the cohomology basis.

1. Compute the DK = ∂kNk’s and Nk’s: D2 is trivial, as it is
the same as ∂2.

D1 =

(−1 0 0 0 0
1 −1 0 0 0
0 1 1 0 0
0 0 −1 0 0
0 0 0 0 0

)
, N1 =

(
1 0 0 −1 0
0 1 0 −1 1
0 0 1 1 −1
0 0 0 1 0
0 0 0 0 1

)
,

2. Contruct the K’s:

K0 = {
(

1
0
0
0
0

)
,

(
0
1
0
0
0

)
,

(
0
0
1
0
0

)
,

(
0
0
0
1
0

)
,

(
0
0
0
0
1

)
}

= {v0, v1, v2, v3, v4}
(N0 is the identity)

K1 ={
(−1
−1
1
1
0

)
,

(
0
1
−1
0
1

)
}={(−e0−e1+e2+e3), (e1−e2+e4)}

3. Construct the I’s:

I0 = {v1 (1 = row#(D1
0)),

v2 (2 = row#(D1
1)),

v3 (3 = row#(D1
2))}

I1 = {(e1 − e2 + e4) (4 = row#(D2
0)}

4. Consequently, the homology basis is:

P 0 = {v0, v1, v2, v3, v4} − {v1, v2, v3} = {v0, v4}

P 1 = {(−e0 − e1 + e2 + e3)}

This result confirms the basis we gave in the example of Sec-
tion 4.4.2 (Note that −(−e0 − e1 + e2 + e3)− (e1 − e2 + e4) =
e0 − e4 − e3 = ∂f0, thus (−e0 − e1 + e2 + e3) spans the same
homology space as (e1 − e2 + e4)).

4.5 Dual Mesh and its Exterior Derivative

Let us introduce the notion of dual mesh of triangulated manifolds,
as we will see that it is one of the key components of our discrete
calculus. The main idea is to associate to each primal k-simplex a
dual (n-k)-cell. For example, consider the tetrahedral mesh in Fig-
ure 13, we associate a dual 3-cell to each primal vertex (0-simplex),
a dual polygon (2-cell) to each primal edge (1-simplex), a dual edge
(1-cell) to each primal face (2-simplex), and a dual vertex (0-cell)
to the primal tet (3-simplex). By construction, the number of dual
(n-k)-cells is equal to that of primal k-simplices. The collection of
dual cells is called a cell complex, which need not be a simplicial
complex in general.

Yet, this dual complex inherits several properties and operations
from the primal simplicial complex. Most important is the notion of
incidence. For instance, if two primal edges are on the same primal
face, then the corresponding dual faces are incident, that is, they
share a common dual edge (which is the dual of the primal common
face). As a result of this incidence property, one may easily derive

a boundary operator on the dual cell complex and, consequently, a
discrete exterior derivative! The reader is invited to verify that this
exterior derivative on the dual mesh can be simply written as the
opposite of a primal one transposed:

dn−k
Dual = (−1)k(dk−1

Primal)
t. (7)

The added negative sign appears as the orientation on the dual is
induced from the primal orientation, and must therefore be properly
accounted for. Once again, an implementation can overload the
definition of this operator d when used on dual forms using this
previous equation. In the remainder of our chapter, we will be using
d as a contextual operator to keep the notations a simple as possible.
Because we have defined a proper exterior derivative on the dual
mesh (still satisfying d ◦ d = 0), this dual cell complex also carries
the structure of a chain complex. The structure on the dual complex
may be linked to that of the primal complex using the Hodge star (a
metric-dependent operator), as we will discuss in Section 5.

Figure 12: A 2-dimensional example of primal and dual mesh elements.
On the top row, we see the primal mesh (a triangle) with a representative
of each simplicial complex being highlighted. The bottom row shows the
corresponding circumcentric dual cells (restricted to the triangle).

4.5.1 Dualization: The ∗ Operator

For simplicity, we use the circumcentric (or Voronoi) duality to con-
struct the dual cell complex. The circumcenter of a k-simplex is
defined as the center of the k-circumsphere, which is the unique k-
sphere that has all k + 1 vertices of the k-simplex on its surface. In
Figure 12, we show examples of circumcentric dual cells of a 2D
mesh. The dual 0-cell associated with the triangular face is the cir-
cumcenter of the triangle. The dual 1-cell associated with one of the
primal edges is the line segment that joins the circumcenter of the
triangle to the circumcenter of that edge, while the dual 2-cell asso-
ciated with a primal vertex is corner wedge made of the convex hull
of the circumcenter of the triangle, the two centers of the adjacent
edges, and the vertex itself (see Figure 12, bottom left). Thereafter,
we will denote as ∗ the operation of duality; that is, a primal sim-
plex σ will have its dual called ∗σ with the orientation induced by
the primal orientation and the manifold orientation. For a formal
definition, we refer the reader to [Hirani 2003] for instance. It is
also worth noting that other notions of duality such as the barycen-
tric duality may be employed. For further details on dual cell (or
“block”) decompositions , see [Munkres 1984].

4.5.2 Wedge Product

In the continuous setting, the wedge product ∧ is an operation used
to construct higher degree forms from lower degree ones; it is the
antisymmetric part of the tensor product. For example, let α and
β be 1-forms on a subset R ⊂ R3, their wedge product α ∧ β is
a 2-form on R. In this case, one can relate the wedge product to
the cross product of vector fields onR. Indeed, if one considers the
vector representations of α and β, the vector proxy to α ∧ β is the
cross product of the two vectors. Similarly, the wedge product of a
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1-form γ with the 2-form ω = α ∧ β is a 3-form µ = γ ∧ ω (also
called volume-form) on R which is analogous to the scalar triple
product of three vectors.

A discrete treatment of the wedge operator can be found
in [Hirani 2003]. Here, we only need to introduce the no-
tion of a discrete primal-dual wedge product: given a pri-
mal k-cochain γ and a dual (n-k)-cochain ω, the discrete
wedge product γ ∧ ω is an n-form (or a volume-form).
For instance, in the example depicted in the inset,
the wedge product of the primal 1-cochain with
the dual 1-cochain is a 2-form associated with the
diamond region defined by the convex hull of the
union between the primal and dual edge (see in-
set).

5 Metric-Dependent Operators on Forms

Notice that up to now, we did not assume that a metric was avail-
able, i.e., we never required anything to be measured. However,
such a metric is necessary for many purposes. For instance, sim-
ulating the behavior of objects around us requires measurements
of various parameters in order to be able to model laws of motion,
and compare the numerical results of simulations. Consequently, a
certain number of operations on forms can only be defined once a
metric is known, as we shall see in this section.

5.1 Notion of Metric and Inner Product

A metric is, roughly speaking, a nonnegative function that describes
the “distance” between neighboring points of a given space. For
example, the Euclidean metric assigns to any two points in the Eu-
clidean space R3, say X = (x1, x2, x3) and Y = (y1, y2, y3), the
number:

d(X,Y)=‖X−Y‖2 =
√

(x1−y1)2 + (x2−y2)2 + (x3−y3)2

defining the “standard” distance between any two points inR3. This
metric then allows one to measure length, area, and volume. The
Euclidean metric can be expressed as the following quadratic form:

gEuclid =




1 0 0
0 1 0
0 0 1


.

Indeed, the reader can readily verify that this matrix g satisfies:
d2(X,Y) = (X − Y)tg(X − Y). Notice also that this metric
induces an inner product of vectors. Indeed, for two vectors u and
v, we can use the matrix g to define:

u · v = utg v.

Once again, the reader is invited to verify that this equality does
correspond to the traditional dot product when g is the Euclidean
metric. Notice that on a non-flat manifold, subtraction of two
points is only possible for points infinitesimally close to each other,
thus the metric is actually defined pointwise for the tangent space
at each point: it does not have to be constant. Finally, notice
that a volume form can be induced from a metric by defining
µn =

√
det(g)dx1 ∧ . . . ∧ dxn.

5.2 Discrete Metric

In the discrete setting presented in this paper, we only need to mea-
sure length, area, and volume of the simplices and dual cells (note

these different notions of sizes depending on dimension will be de-
noted “intrinsic volumes” for generality). We therefore do not have
a full-blown notion of a metric, only a discrete metric. Obviously,
if one were to use a finer mesh, more information on the metric
would be available: having more values of length, area, and vol-
ume in a neighborhood provides a better approximation of the real,
continuous metric.

5.3 The Differential Hodge Star

Let us go back for a minute to the differential case to explain a new
concept. Recall that the metric defines an inner product for vectors.
This notion also extends to forms: given a metric, one can define the
product of two k-forms ∈ Ωk(M) which will measure, in a way,
the projection of one onto the other. A formal definition can be
found in [Abraham et al. 1988]. Given this inner product denoted
〈 , 〉, we can introduce an operator ?, called the Hodge star, that
maps a k-form to a complementary (n-k)-form:

? : Ωk(M) → Ωn−k(M),

and is defined to satisfy the following equality:

α ∧ ?β = 〈α, β〉 µn

for any pair of k-forms α and β (recall that µn is the volume form
induced by the metric g). However, notice that the wedge product
is very special here: it is the product of k-form and a (n-k)-form,
two complementary forms. This fact will drastically simplify the
discrete counterpart of the Hodge star, as we now cover.

d d d

0-forms (vertices) 1-forms (edges) 2-forms (faces) 3-forms (tets)

d d d

Figure 13: On the first line, the ‘primal’ chain complex is depicted and on
the second line we see the dual chain complex (i.e., cells, faces, edges and
vertices of the Voronoi cells of each vertex of the primal mesh).

5.4 Discrete Hodge Star

In the discrete setting, the Hodge star becomes easier: we only
need to define how to go from a primal k-cochain to a dual (n-k)-
cochain, and vice-versa. By definition of the dual mesh, k-chains
and dual (n-k)-chains are represented by vectors of the same di-
mension. Similarly to the discrete exterior derivative (coboundary)
operator, we may use a matrix (this time of size |Kk| × |Kk|) to
represent the Hodge star. Now the question is: what should the
coefficients of this matrix be?

For numerical purposes we want it to be symmetric, positive def-
inite, and sometimes, even diagonal for faster computations. One
such diagonal Hodge star can be defined with the diagonal elements
as the ratio of intrinsic volumes of a k-simplex and its dual (n-k)-
simplex. In other words, we can define the discrete Hodge star
through the following simple rule:

1

|σk|
∫

σk

ω =
1

| ∗ σk|
∫

∗σk

?ω (8)
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Therefore, any primal value of a k-form can be easily transferred
to the dual mesh through proper scaling—and vice-versa; to be pre-
cise, we have:

?k?n−k = (−1)k(n−k)Id, (9)

which means that ? on the dual mesh is the inverse of the ? on
the primal up to a sign (the result of antisymmetry of the wedge
product, which happens to be positive for any k-form when n = 3).

So we must use the inverse of the Hodge star to go from a dual
(n-k)-cochain to a k-cochain. We will, however, use ? to indistin-
guishably mean either the star or its inverse, as there is no ambiguity
once we know whether the operator is applied to a primal or a dual
form: this is also a context-dependent operator.

Implementation Based on Eq. (8), the inner product of forms
αk and βk at the diamond-shaped region formed by each k-simplex
and its dual (n − k)-simplex is simply the product of the value of
α at that k-simplex and value of ?β at that dual (n − k)-simplex.
Therefore, the sum over the whole space gives the following in-
ner product (which involves only linear algebra matrix and vector
multiplications)

〈αk, βk〉 = αt ? β. (10)

where the Hodge star matrix has, as its only non-zero coefficients,
the following diagonal terms:

(?k)qq = |(∗σ)q|/|(σq)|.

Notice that this definition of the inner product, when α = β, in-
duces the definition of the norm of k-forms.

Again, there are three different Hodge stars in R3, one for each
simplex dimension. But as we discussed for all the other operators,
the dimension of the form on which this operator is applied disam-
biguates which star is meant. So we will not encumber our notation
with unnecessary indices, and will only use the symbol ? for any of
the three stars implied.

The development of an accurate, yet fast to compute, Hodge star
is still an active research topic. However, this topic is beyond the
scope of the current chapter.

5.5 Discrete Codifferential Operator δ

We already have a linear operator d which maps a k-form to a k+1-
form, but we do not have a linear operator which maps a k-form to
a (k− 1)-form. Having defined a discrete Hodge star, one can now
create such an adjoint operator δ for the discrete exterior derivative
d. Here, adjoint is meant with respect to the inner product of forms;
that is, this operator δ satisfies:

〈dα, β〉 = 〈α, δβ〉 ∀α ∈ Ωk−1(M), β ∈ Ωk(M)

For a smooth, compact manifold without boundary, one can
prove that (−1)n(k−1)+1 ? d? satisfies the above condi-
tion [Abraham et al. 1988]. Let us try to use the same definition
in the discrete setting; i.e., we wish to define the discrete δ applied
to k-forms by the relation:

δ ≡ (−1)n(k−1)+1 ? d?, (11)

Beware that we use the notation d to mean the context-dependent
exterior derivative. If you apply δ to a primal k-form, then the
exterior derivative will be applied to a dual (n− k)-form, and thus,

Equation 7 should be used. Once this is well understood, it is quite
straightforward to verify the following series of equalities:

〈dα, β〉 Eq. (10)
= (dα)t ? β = αtdt ? β

Eq. (9) w/ k↔k−1
= αt(−1)(k−1)(n−(k−1)) ? ?dt ? β

= αt(−1)n(k−1)+1 ? ?(−1)kdt ? β

Eq. (11)
= 〈α, δβ〉

holds on our discrete manifold. So indeed, the discrete d and δ are
also adjoint, in a similar fashion in the discrete setting as they were
in the continuous sense. For this reason, δ is called the codifferen-
tial operator.

Implementation of the Codifferential Operator Thanks to
this easily-proven adjointness, the implementation of the discrete
codifferential operator is a trivial matter: it is simply the product of
three matrices, mimicking exactly the differential definition men-
tioned in Eq. (11).

5.6 Exercise: Laplacian Operator

At this point, the reader is invited to perform a little exercise. Let us
first state that the Laplacian ∆ of a form is defined as: ∆ = δd+dδ.
Now, applied to a 0-form, notice that the latter term disappears.
Question: in 2D, what is the Laplacian of a function f at a vertex
i? The answer is actually known: it is the now famous cotangent
formula [Pinkall and Polthier 1993], since the ratio of primal and
dual edge lengths leads to such a trigonometric equality. Applied to
a 1-form, however, the expression does have both terms as explicitly
given in [Fisher et al. 2007].

6 Interpolation of Discrete Forms

In Section 3.4, we argued that k-cochains are discretizations of k-
forms. This representation of discrete forms on chains, although
very convenient in many applications, is not sufficient to fulfill cer-
tain demands such as obtaining a point-wise value of the k-form.
As a remedy, one can use an interpolation of these chains to the rest
of space. For simplicity, these interpolation functions can be taken
to be linear (by linear, we mean with respect to the coordinates of
the vertices).

6.1 Interpolating 0-forms

It is quite obvious how to linearly interpolate discrete 0-forms (as
0-cochains) to the whole space: we can use the usual vertex-based
linear interpolation basis, often referred to as the hat function in the
Finite Element literature. This basis function will be denoted as ϕi

for each vertex vi. By definition, ϕi satisfies:

ϕi = 1 at vi, ϕi = 0 at vj 6= vi

while ϕi linearly goes to zero in the one-ring neighborhood of vi.
The reader may be aware that these functions are, within each sim-
plex, barycentric coordinates, introduced by Möbius in 1827 as
mass points to define a coordinate-free geometry.

With these basis functions, one can easily check that if we denote a
vertex vj by σj , we have:

∫

vj

ϕvi =

∫

σj

ϕσi =

∫

σj

ϕi =

{
1 if i = j,

0 if i 6= j.

Therefore, these interpolating functions represent a basis of 0-
cochains, that exactly corresponds to the dual of the natural basis of
0-chains.
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6.2 Interpolating 1-forms

We would like to be able to extend the previous interpolation tech-
nique to 1-forms now. Fortunately, there is an existing method to
do just that: the Whitney 1-form (used first in [Whitney 1957]) as-
sociated with an edge σij between vi and vj is defined as:

ϕσij = ϕidϕj − ϕjdϕi.

A direct computation can verify that:

∫

σkl

ϕσij =





1 if i = k and j = l,

−1 if i = l and j = k,

0 otherwise.

Indeed, it is easy to see that the integral is 0 when we are not inte-
grating it on edge eij , because at least one of the vertices (say, i) is
not on the edge, thus, ϕi = 0 and dϕi = 0 on the edge. However,
along the edge σij , we have ϕi + ϕj = 1, therefore:

∫

σij

ϕσij =

ϕi=0∫

ϕi=1

(ϕid(1−ϕi)−(1−ϕi)dϕi) =

ϕi=0∫

ϕi=1

(−dϕi) = 1.

We thus have defined a correct basis for 1-cochains.

6.3 Interpolating with Whitney k-Forms

One can extend these 1-form basis functions to arbitrary k-
simplices. In fact, Whitney k-forms are defined similarly:

ϕσi0,i1,...,ik
= k!

∑

j=0...k

(−1)jϕij dϕi0 ∧ ... ∧ d̂ϕij ... ∧ dϕik

where d̂ϕip means that dϕip is excluded from the product. No-
tice how this definition exactly matches the case of vertex and edge
bases, and extends easily to higher dimensional simplices.

Remark If a metric is defined (for instance, the Euclidean met-
ric), we can simply identify dϕ with ∇ϕ for the real calculation.
This corresponds to the notion of sharp (]), but we will not develop
this point other than for pointing out the following remark: the tra-
ditional gradient of a linear function f in 2D, known to be constant
per triangle, can indeed be re-written à la Whitney:

∇f =
∑

i

fi∇ϕi

ϕi+ϕj+ϕk=1
=

∑

i,j,i6=j

(fj−fi)(ϕi∇ϕj−ϕj∇ϕi).

The values (fj−fi) are the edge values associated with the gradient,
i.e., the values of the one-form df .

Figure 14: ∇ϕ for the vertex on top

Basis of Forms The integration of the Whitney form ϕσk as-
sociated with the k-simplex σk will be 1 on that particular simplex,
and 0 on all others. Indeed, it is a simple exercise to see that the
integration of ϕσk is 0 on a different k-simplex, because there is
at least one vertex of this simplex vj that does not belong to σk,
so its hat function ϕj is valued 0 everywhere on σk. Since ϕj or
dϕj appears in every term, the integral of ϕσk is 0. To see that
the integral is 1 on the simplex itself, we can use Stokes’ theorem
(as our discrete forms satisfy it exactly on simplices): first, suppose
k < n, and pick a k + 1-simplex, such that the k-simplex σk is a
face of it. Since it is 0 on other faces, the integral of the Whitney
form is equal to the integral of dϕσk = (k + 1)!dϕi0 ∧ ... ∧ ϕik

on the k + 1-simplex, if we use ϕij as a local reference frame for
the integration,

∫
σk+1 dϕi0 ∧ ... ∧ ϕik is simply the volume of a

standard simplex, which is 1
(k+1)!

, thus the integral is 1. The case
when k = n is essentially the same as k = n− 1.

This means that these Whitney forms are forming a basis of their
respective form spaces. In a way, these bases are an extension of
the Finite Element bases defined on nodes, or of the Finite Volume
elements that are constant per tet.

Note finally that the Whitney forms are not continuous; however,
they are continuous along the direction of the k-simplex (i.e., tan-
gential continuity for 1-forms, and normal continuity for 2-forms);
this is the only condition needed to make the integration well de-
fined. In a way, this property is the least we can ask them to be. We
would lose generality if we were to add any other condition! The
interested reader is referred to [Bossavit 1998] for a more thorough
discussion on these Whitney bases and their relations to the notion
of weak form used in the Finite Element Method.

7 Application to Hodge Decomposition

We now go through a first application of the discrete exterior calcu-
lus we have defined up to now. As we will see, the discrete case is
often much simpler than its continuous counterpart; yet it captures
the same properties.

7.1 Introducing the Hodge Decomposition

It is convenient in some applications to use the Helmholtz-Hodge
decomposition theorem to decompose a given continuous vector
field or differential form (defined on a smooth manifold M) into
components that are mutually orthogonal (in the L2 sense), and
easier to compute (see [Abraham et al. 1988] for details). In fluid
mechanics for example, the velocity field is generally decomposed
into a part that is the gradient of a potential function and a part
that is the curl of a stream vector potential (see Section 8.3 for
further details), as the latter one is the incompressible part of the
flow. When applied to k-forms, this decomposition is known as the
Hodge decomposition for forms and can be stated as follows:

Given a manifoldM and a k-form ωk onM with appropriate
boundary conditions, ωk can be decomposed into the sum of
the exterior derivative of a (k-1)-form αk−1, the codifferential
of a (k+1)-form βk+1, and a harmonic k-form hk:

ωk = dαk−1 + δβk+1 + hk.

Here, we use the term harmonic to mean that hk satisfies the equa-
tion ∆hk = 0, where ∆ is the Laplacian operator defined as
∆ = dδ + δd. The proof of this theorem is mathematically in-
volved and requires the use of elliptic operator theory and similar
tools, as well as a careful study of the boundary conditions to en-
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sure uniqueness. The discrete analog that we propose has a very
simple and straightforward proof as shown below.

7.2 Discrete Hodge Decomposition

In the discrete setting, the discrete operators such as the exterior
derivative and the codifferential can be expressed using matrix rep-
resentation. This allows one to easily manipulate these operators
using tools from linear algebra. In particular, the discrete version
of the Hodge decomposition theorem becomes a simple exercise in
linear algebra. Note that we will assume a boundaryless domain for
simplicity (the generalization to domains with boundary is concep-
tually as simple).

Theorem 7.1 Let K be a discrete manifold and let Ωk(K) be
the space of discrete Whitney k-forms on K. Consider the lin-
ear operator dk : Ωk(K) → Ωk+1(K), such that dk+1◦dk =
0, and a discrete Hodge star which is represented as a sym-
metric, positive definite matrix. Furthermore, define the codif-
ferential (the adjoint of the operator d) as done in Section 5.5;
namely, let δk+1 = (−1)n(k−1)+1(?k)−1(dk)t?k+1. In this
case, the following orthogonal decomposition holds for all k:

Ωk(K) = dΩk−1(K)⊕ δΩk+1(K)⊕Hk(K)

where ⊕ means orthogonal sum, and Hk(K) is the space of
harmonic k-forms on K, that is, Hk(K) = {h | ∆kh = 0}.

Proof For notational convenience, we will omit the superscript of
the operators when the rank is obvious. We first prove that the three
component spaces are orthogonal. Clearly, using the facts that the
Laplacian operator ∆ is equal to dδ+δd and that d and δ are adjoint
operators, one has that ∀h ∈ Hk:

〈∆h, h〉 = 0 ⇒ 〈dδh, h〉+ 〈δdh, h〉=〈dh, dh〉+ 〈δh, δh〉=0

⇒ dh = 0 and δh = 0

Also, for all α ∈ Ωk−1(K) and β ∈ Ωk+1(K), one has:

〈dα, δβ〉 = 〈ddα, β〉 = 0

and

〈dα, h〉 = 〈α, δh〉 = 0 〈h, δβ〉 = 〈dh, β〉 = 0

Now, any k-form that is perpendicular to dΩk−1(K) and
δΩk+1(K) must be in Hk(K), because this means dh = 0 and
δh = 0, so ∆h = dδh + δdh = 0.

Alternatively, we can prove that:

Ωk(K) = ∆Ωk(K)⊕Hk(K).

By analogy to the previous argument, it is easy to show that ∆Ωk is
orthogonal to Hk. Additionally, the dimension of these two spaces
sum up to the dimension of Ωk, which means the decomposition is
complete.

Note that the reader can find a similar proof given in Appendix B
of [Frankel 2004], where it is used for Kirchhoff’s Circuit Laws.
There, Frankel does not mention that we can actually use cochains
as the discretization of forms, and his operations using a “metric”
of cochains can be interpreted as a Hodge star.

Implementation of the Discrete Hodge Decomposition
Before we discuss how to numerically implement the discrete
Hodge decomposition, we prove a useful result (that has a continu-
ous analog).

Lemma 7.2 In the discrete setting, one can find exactly one har-
monic cochain from each cohomology equivalence class.

Proof It is can be readily shown that the bases of harmonic
cochains and the cohomology groups both have the dimension
equal to dim(Ker dk)− dim(Im dk−1). To this end, recall that a
cohomology basis is defined as is Ker(dk)/Im(dk−1) and has di-
mension dim(Ker dk)−dim(Im dk−1). Now, in order to see that
the space of harmonic cochains has this same dimension, simply
note that: Ker(dk) = dΩk−1 ⊕Hk.

Now, the equation δ(ω + df) = 0 has a solution for each ω in one
cohomology equivalence class. We know that the cochains forming
different cohomology groups are linearly independent, hence, we
conclude that these harmonic cochains span Hk.

By virtue of the above lemma, the implementation of the Hodge
decomposition is simply recursive in the rank of the form (i.e.,
cochain). The case of 0-forms is trivial: fix one vertex to a con-
stant, and solve the Poisson equation for 0-forms. Now suppose
that we have a decomposition working for (k − 1)-forms, and we
look for the decomposition of k-forms. Our approach is to get the
harmonic component hk first, so that we only need to solve a Pois-
son equation for the rest:

∆ωk = fk − hk (12)

One is left with the problem of finding a basis of harmonic forms.
Since we are given a Hodge star operator, we will use it to define
the metric on the space of cochains. This metric allows us to define
a basis for harmonic k-form (the dimension of this harmonic space
is generally small, since it is the k-th Betti number βk). First, one
needs to calculate the cohomology basis {Pi} based on the algo-
rithm in Section 4.4.4. Once we have {Pi}, we solve one special
decomposition of (k-1)-forms by first computing the forms fi sat-
isfying:

∆fi = −δPi (13)

Now Hk = Pi + dfi gives us the forms in basis for harmonic k-
form space. After normalization, we have the basis to calculate the
projection hk = HHtfk, where we assemble all Hk into a matrix
H . This completes the procedure of calculating the decomposition.

A non-singular matrix is often preferable when it comes to solve
a linear system efficiently; we can change the Laplacian matrix
slightly to make the Poisson equation satisfy this requirement. First,
we can get an orthonormal basis for harmonic form space (the di-
mension is βk). Now for basis ej (column vector with j-th element
equal to 1, and 0 everywhere else), take the distance of ej to the har-
monic space |ej −HHtej |; notice that this can be done in constant
time. Now take out the j-th column and j-th row of ∆ if ej has the
smallest distance from harmonic space, and repeat the step for βk

times. We are left with a non-singular matrix, and the solution to
the new linear system is a solution to the original Poisson equation.

8 Others Applications

8.1 Form-based Proof of Tutte’s Theorem

The notion of forms as convenient, intrinsic substitutes for vector
fields has been used to provide a concise proof of the celebrated
Tutte’s Embedding Theorem. This important result in graph theory
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states that if one fixes the boundary of a 3-connected graph (i.e., a
typical polygonal mesh) to a convex domain in the plane and en-
sures that every non-boundary vertex is a strict convex combination
of its neighbors, then one obtains a planar straight-line embedding
of the graph. In other words, this embedding procedure will not
result in fold-overs. A significantly shorter alternative to the orig-
inal proof of this theorem was proposed by Gortler, Gotsman, and
Thurston [Gortler et al. 2006], using discrete 1-forms on edges. We
now present a sketch of their approach, using a formulation more in
line with the terms we used in this paper.

A Tutte embedding assigns to each vertex vi of a graph G some 2D
coordinates X(vi) = (x(vi), y(vi)). By definition, each interior
vertex vi satisfies a linear condition on its coordinates of the form:
X(vi) =

∑
vj∈N (i) wijX(vj), where N (i) is the set of 1-ring

neighbors of vertex vi. These coefficients wij are all non-negative
due to the condition of strict convex combination mentioned above.
Now, for a given Tutte embedding, one can construct a 0-form
z(v) = αx(v)+βy(v) for any pair of positive coefficients α and β.
Notice that this 0-form satisfies the same convex combination con-
dition: z(vi) =

∑
vj∈N (i) wijz(vj). As they are non negative,

one can identify these coefficients wij with the diagonal Hodge
star of primal 1-forms (see Section 7) defined by a particular met-
ric. Therefore, the relationship 0 =

∑
vj∈N (i) wij(z(vj)− z(vi))

is equivalent to: d ? dz = 0. There are two immediate conclu-
sions:

¦ the 1-form ω = dz is closed (since it is the exterior derivative
of a 0-form), and

¦ it is also co-closed since δω = (?d?)dz = ?(d ? dz) = 0.

To use the previously defined 1-form ω to prove Tutte’s theorem,
Gortler et al. then invoke the usual definition of index of vector
fields, i.e., the number of revolutions that the direction of the vector
fields does along any small curve around this vertex. This concept is
one of the oldest in Algebraic Topology, initially stated by Poincaré
and then developed by Hopf and Morse in the continuous case. Its
discrete counterpart was first proposed by Banchoff, and used for
instance in [Lazarus and Verroust 1999]. A discrete Poincare-Hopf
index theorem also holds, stating that the sum of all indices must
be equal to 2 for a genus-0 patch. The final argument uses the link
between (co)closed forms and their indices. Indeed, because we
found a closed and coclosed form ω, it can be easily shown that
these two properties induce that the index of each face must be less
or equal to zero, as well as the index of each vertex. Because the
boundary of the patch is convex, only two vertices on the boundary
have index 1. Since all the indices must sum to 2 and each interior
index must be less than zero, we can conclude that each interior
index is zero. Because this argument is valid for every positive pair
(α, β), one can easily deduce that each interior face is convex and
each vertex is a “wheel”; thus, injectivity can be guaranteed.

This rather elegant proof demonstrates how discrete forms and their
obvious links to Algebraic Topology can be quite powerful in a va-
riety of applications. We also point the interested reader to other
papers, such as [Mercat 2001; Gu and Yau 2003], for which special
discrete Hodge stars are defined to satisfy a discrete definition of
conformality: there are also very interesting research on this partic-
ular topic, once again using the calculus of exterior forms.

8.2 Electromagnetism with Forms

Electromagnetism can be formulated very elegantly using dif-
ferential forms. For a detailed exposition of the geomet-
ric structure in E&M, we refer the reader to [Bossavit 1998]
and [Warnick et al. 1997]. In this approach, the electric field E is
represented by a 1-form as the integral of E along a path traced by

a test charge q, and is equal to the electromotive force experienced
by that charge. The electric displacement L as well as the current
density J are represented by 2-forms. The charge distribution ρ is
a 3-form. The magnetic field B is represented by a 2-form since it
is measured as a flux. whereas the magnetic field intensity H is a
1-form.

With these conventions, Maxwell’s equations can be rewritten as
follows:

∂tB + dE = 0, −∂tL + dH = J, dL = ρ, (14)

subject to the constitutive equations:

L = εE, H = µB, (15)

where ε is the permittivity, and µ is the permeability. The consti-
tutive relations (15) are very similar to the Hodge star operator that
transforms a k-form to an (n-k)-form. Here, ε operates on the elec-
tric field E (1-form) to yield the electric displacement L (2-form)
while µ transforms the magnetic field B (2-form) into the magnetic
field intensity H (1-form). To this end, one may think of both ε
and µ as Hodge star operators induced from appropriately chosen
metrics. Note that the balance laws in (14) are metric-independent.

As the reader can guess, one can readily discretize this representa-
tion of the physical quantities E, L, . . . and the associated system of
equations (14-15) using the tools presented in this chapter. The re-
sulting numerical algorithms preserve exactly the geometric struc-
ture of the system [Bossavit 1998], even in the presence of charge
and/or for irregular meshes [Stern et al. 2008].

8.3 Fluids

The geometric structure of Fluid Mechanics, specifically Eu-
ler’s equations for inviscid fluids, has been investigated
(see [Marsden and Weinstein 1983] and references therein). In this
geometric framework, vorticity is represented as a two-form (an
area-form) and Euler’s equations can be written as vorticity advec-
tion. Roughly speaking, vorticity measures the rotation of a fluid
parcel; we say the fluid parcel has vorticity when it spins as it moves
along its path. Vorticity advection means that the vorticity (as a
two-form) moves dynamically as if it is pushed forward by the fluid
flow. The integral of the vorticity on a given bounded domain is
equal, by Stokes’ theorem, to the circulation around the loop en-
closing the domain. This quantity, as the loop is advected by the
fluid, is conserved in the absence of external forcing, as well as the
total energy of the fluid. Inspired by this geometric viewpoint and
in light of the present development of Discrete Exterior Calculus,
one can develop a discrete differential approach to fluid mechanics
and an integration scheme that satisfy conservation of circulation,
see [Elcott et al. 2007] for further details.

8.4 Developments in Geometry Processing

Discrete forms, with their geometric nature we described up to
now, lend themselves naturally to geometric applications. From
the design of barycentric coordinates over arbitrary polytopes (see,
e.g., [Warren et al. 2007]) usable as dual form basis, to the de-
sign of smooth, higher-order Whitney forms [Wang et al. 2006],
discrete forms have been shown particularly relevant in several
geometry processing tasks. Recent applications include point
set reconstruction [Alliez et al. 2007], Eulerian treatment of inter-
faces [Mullen et al. 2007], as well as conformal parameterization
and its use for quadrangle meshing [Tong et al. 2006]—note the re-
cent non-linear version that offers a complete notion of conformal
equivalence for triangle meshes [Springborn et al. 2008], including
a discrete metric.
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9 Conclusions

In this chapter, we have provided an introduction to discrete
differential forms and explained how they can be extremely useful
in computational science. A convenient Discrete Exterior Calculus
solely based on values stored on a discrete manifold has been
derived. In the common 3D case, this calculus for scalar and vector
fields can be summarized by the following schematic graph:

We have also given a discrete version of the Hodge decomposi-
tion, useful for a number of computations in various fields. Despite
numerous recent developments this geometric approach to compu-
tations is still nascent, and many details need to be explored and
proven superior to current approaches. In order to work towards
this goal, more work needs to be done to further demonstrate that
this idea of forms as fundamental readily-discretizable elements of
differential equations can be successfully used in various other con-
texts where predictive power is crucial.
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CARTAN, É. 1945. Les Systèmes Differentiels Exterieurs et leurs
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SCHRÖDER, P. 2007. Discrete, Circulation-preserving and Sta-
ble Simplicial Fluid. ACM Trans. on Graphics 26(1) (Jan.).
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Further Reading

Despite a large number of theoretical books, we are aware of
only a few books with a truly “applied flavor” in line with this
chapter. For applications based on this exterior calculus or
other geometric algebras, see [Bossavit 1998; Flanders 2001;
Bobenko and Seiler 1999; Doran and Lasenby 2003;
Gross and Kotiuga 2004; Ramaswamy and Shapiro 2004]. The
reader interested in the application of differential forms to E&M is
further referred to [Warnick et al. 1997], for applications in fluid
mechanics see [Marsden and Weinstein 1983], and in elasticity
see [Kanso et al. 2007] and [Frankel 2004]. The reader is also
invited to check out current developments of variants of DEC, for
instance, in [Dimakis and Müller-Hoissen 1994; Schreiber 2003;
Zapatrin 1996; Harrison 2005], as well as the nice, thorough
review from Bochev and Hyman [Bochev and Hyman 2005].

Finally, the interested reader can find additional material on the fol-
lowing websites:

Graphics and Applied Geometry at Caltech:
http://multires.caltech.edu/pubs/
http://www.geometry.caltech.edu/
Computational E&M (Alain Bossavit):
http://www.lgep.supelec.fr/mse/perso/ab/bossavit.html
Discrete Vector Fields and Combinatorial Topology (R. Forman):
http://math.rice.edu/∼forman/
Discrete Mechanics at Caltech (Jerrold E. Marsden):
http://www.cds.caltech.edu/∼marsden/
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Chapter 8:
Building Your Own DEC at Home

Sharif Elcott
Caltech

Peter Schröder
Caltech

1 Overview

The methods of Discrete Exterior Calculus (DEC) have given birth
to many new algorithms applicable to areas such as fluid simula-
tion, deformable body simulation, and others. Despite the (possi-
bly intimidating) mathematical theory that went into deriving these
algorithms, in the end they lead to simple, elegant, and straight-
forward implementations. However, readers interested in imple-
menting them should note that the algorithms presume the exis-
tence of a suitable simplicial complex data structure. Such a data
structure needs to support local traversal of elements, adjacency in-
formation for all dimensions of simplices, a notion of a dual mesh,
and all simplices must be oriented. Unfortunately, most publicly
available tetrahedral mesh libraries provide only unoriented rep-
resentations with little more than vertex-tet adjacency information
(while we need vertex-edge, edge-triangle, edge-tet, etc.). For those
eager to implement and build on the algorithms presented in this
course without having to worry about these details, we provide an
implementation of a DEC-friendly tetrahedral mesh data structure
in C++. This chapter documents the ideas behind the implementa-
tion.

1.1 Motivation

Extending a classic pointer-based mesh data structure to 3D is
unwieldy, error-prone, and difficult to debug. We instead take a
more abstract set-oriented view in the design of our data structure,
by turning to the formal definition of an abstract simplicial com-
plex. This gives our implementation the following desirable prop-
erties:

• We treat the mesh as a graph and perform all of our operations
combinatorially.

• There is no cumbersome pointer-hopping typical of most mesh
data structures.

• The design easily generalizes to arbitrary dimension.
• The final result is very compact and simple to implement.

In effect we are taking advantage of the fact that during assembly
of all the necessary structures one can use high level, abstract data
structures. That way formal definitions can be turned into code al-
most verbatim. While these data structures (e.g., sets and maps)
may not be the most efficient for computation, an approach which
uses them during assembly is far less error prone. Once every-
thing has been assembled it can be turned easily into more efficient
packed representations (e.g., compressed row storage format sparse
matrices) with their more favorable performance during the actual
computations which occur, e.g., in physical simulation.

1.2 Outline

We will begin with a few definitions in Section 2, and see how
these translate into our tuple-based representation in Section 3. The
boundary operator, described in Section 4, facilitates mesh traver-
sal and implements the discrete exterior derivative. We show how

face

face

face
face

Figure 1: Some typical examples of 2D mesh representations
(from [Joy et al. 2002]; used with permission). Such pointer-based
data structures become quite difficult to manage once they are ex-
tended to 3D.

everything is put together in Section 5. Finally, we discuss our im-
plementation of the DEC operators in Section 6.

2 Definitions

We begin by recalling the basic definitions of the objects we are
dealing with. The focus here is on the rigorous mathematical def-
initions in a form which then readily translates into high level al-
gorithms. The underlying concepts are simply what we all know
informally as meshes in either two (triangle) or three (tet) dimen-
sions.

Simplices A simplex is a general term for an element of the
mesh, identified by its dimension. 0-simplices are vertices, 1-
simplices are edges, 2-simplices are triangles, and 3-simplices are
tetrahedra.

Abstract Simplicial Complex This structure encodes all the
relationships between vertices, edges, triangles, and tets. Since we
are only dealing with combinatorics here the atomic element out
of which everything is built are the integers 0 ≤ i < n referencing
the underlying vertices. For now they do not yet have point po-
sitions in space. Formally, an abstract simplicial complex is a set
of subsets of the integers 0 ≤ i < n, such that if a subset is con-
tained in the complex then so are all its subsets. For example, a 3D
complex is a collection of tetrahedra (4-tuples), triangles (3-tuples),
edges (2-tuples), and vertices (singletons), such that if a tetrahedron
is present in the complex then so must be its triangles, edges, and

Discrete Differential Geometry: An Applied Introduction (Desbrun, Grinspun, Schröder, Wardetzky) SIGGRAPH Asia 2008

63



vertices. All our simplicial complexes will be proper three or two
manifolds, possibly with boundary and may be of arbitrary topol-
ogy (e.g., containing voids and tunnels).

Manifold The DEC operators that we build on are defined only
on meshes which represent manifolds. Practically speaking this
means that in a 3D simplicial complex all triangles must have two
incident tets only (for a boundary triangle there is only one incident
tet). Every edge must have a set of tets incident on it which form
a single “ring” which is either open (at the boundary) or closed (in
the interior). Finally for vertices it must be true that all incident tets
form a topological sphere (or hemisphere at the boundary). These
properties should be asserted upon reading the input. For example,
for triangles which bound tets one must assert that each such tri-
angle occurs in at most two tets. For an edge the “ring” property
of incident tets can be checked as follows. Start with one incident
tet and jump across a shared triangle to the next tet incident on the
edge. If this walk leads back to the original tet and all tets incident
on the edge can thusly be visited, the edge passes the test. (For
boundary edges such a walk starts at one boundary tet and ends
at another.) The test for vertices is more complex. Consider all
tets incident on the given vertex. Using the tet/tet adjacency across
shared triangles one can build the adjacency graph of all such tets.
This graph must be a topological sphere (or hemisphere if the vertex
is on the boundary).

Since we need everything to be properly oriented we will only allow
orientable manifolds (i.e., no Möbius strips or Klein bottles).

Regularity To make life easier on ourselves we also require the
simplicial complex to be strongly regular. This means that sim-
plices must not have identifications on their boundaries. For ex-
ample, edges are not allowed to begin and end in the same vertex.
Similarly, the edges bounding a triangle must not be identified nor
do we allow edges or triangles bounding a tet to be identified. In
practice this is rarely an issue since the underlying geometry would
need to be quite contorted for this to occur. Strictly speaking though
such identifications are possible in more general, abstract settings
without violating the manifold property.

Embedding It is often useful to distinguish between the topol-
ogy (neighbor relationships) and the geometry (point positions) of
the mesh. A great deal of the operations performed on our mesh can
be carried out using only topological information, i.e., without re-
gard to the embedding. The embedding of the complex is given by
a map p : [0,n) "→ (x,y,z) ∈ R3 on the vertices (which is extended
piecewise linearly to the interior of all simplices). For example,
when we visualize a mesh as being composed of piecewise linear
triangles (for 2D meshes) or piecewise linear tets, we are dealing
with the geometry. Most of the algorithms we describe below do
not need to make reference to this embedding. When implementing
these algorithms it is useful to only think in terms of combinatorics.
There is only one stage where we care about the geometry: the com-
putation of metric dependent quantities needed in the definition of
the Hodge star.

3 Simplex Representation

Ignoring orientations for a moment, each k-simplex is represented
as a (k + 1)-tuple identifying the vertices that bound the simplex.
In this view a tet is simply a 4-tuple of integers, a triangle is a 3-
tuple of integers, an edge is a 2-tuple, and a vertex is a singleton.

Note that all permutations of a given tuple refer to the same sim-
plex. For example, (i, j,k) and ( j, i,k) are different aliases for the
same triangle. In order to remove ambiguities, we must designate
one representative alias as the representation of the simplex in our
data structures. We do this by using the sorted permutation of the
tuple. Thus each simplex (tuple) is stored in our data structures as
its canonical (sorted) representative. Then if we, for example, need
to check whether two simplices are in fact the same we only need
to compare their representatives element by element.

All this information is stored in lists we designate V, E, F, and T.
They contain one representative for every vertex, edge, triangle, and
tet, respectively, in the mesh.

3.1 Forms

The objects of computation in an algorithm using DEC are forms.
Formally, a differential k-form is a quantity that can be integrated
over a k dimensional domain. For example, consider the expression∫

f (x)dx (x being a scalar). The integrand f (x)dx is called a 1-
form, because it can be integrated over any 1-dimensional interval.
Similarly, the dA in

∫ ∫
dA would be a 2-form.

Discrete differential forms are dealt with by storing the results of
the integrals themselves, instead of the integrands. That is, discrete
k-forms associate one value with each k-simplex, representing the
integral of the form over that simplex. With this representation we
can recover the integral over any k-dimensional chain (the union of
some number of k-simplices) by summing the value on each sim-
plex (using the linearity of the integral).

Since all we have to do is to associate one value with each simplex,
for our purposes forms are simply vectors of real numbers where
the size of the vector is determined by the number of simplices of
the appropriate dimension. 0-forms are vectors of size |V|, 1-forms
are vectors of size |E|, 2-forms are vectors of size |F|, and 3-forms
are vectors of size |T|. Such a vector representation requires that we
assign an index to each simplex. We use the position of a simplex in
its respective list (V, E, F, or T) as its index into the form vectors.

3.2 Orientation

Because the vectors of values we store represent integrals of the as-
sociated k-form over the underlying simplices, we must keep track
of orientation. For example, reversing the bounds of integration on∫ b

a f (x)dx flips the sign of the resulting value. To manage this we
need an intrinsic orientation for each simplex. It is with respect
to this orientation that the values stored in the form vectors receive
the appropriate sign. For example, suppose we have a 1-form f
with value fi j assigned to edge e = (i, j); that is, the real number
fi j is the integral of the 1-form f over the line segment (pi, p j). If
we query the value of this form on the edge ( j, i) we should get
− fi j.

i

  (i,j,k)
  (j,k,i)
–(j,i,k)

  (j,i,k)
  (i,k,j)
–(i,j,k)

j

k

i

j

k

...
...

Figure 2: All permutations of a triple (i, j,k) refer to the same tri-
angle, and the sign of the permutation determines the orientation.
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Hence every tuple must be given a sign indicating whether it agrees
(+) or disagrees (−) with the intrinsic orientation of the simplex.
Given a set of integers representing a simplex, there are two equiv-
alence classes of orderings of the given tuple: the even and odd
permutations of the integers in question. These two equivalence
classes correspond to the two possible orientations of the simplex
(see Fig. 2).

Note that assigning a sign to any one alias (i.e., the representative)
implicitly assigns a sign to all other aliases. Let us assume for a
moment that the sign of all representatives is known. Then the sign
S of an arbitrary tuple t, with representative r, is

S(t) =
{

S(r) if t is in the same equivalence class as r
−S(r) if t is in the opposite equivalence class.

More formally, let P be the permutation that permutes t into r (i.e.,
r = P(t)). Then

S(t) = S(P)S(P(t)).

(Here S(P) denotes the sign of the permutation P with +1 for even
and −1 for odd permutations.)

All that remains, then, is to choose an intrinsic orientation for each
simplex and set the sign of the representative alias accordingly. In
general the assignment of orientations is arbitrary, as long as it is
consistent. For all subsimplices we choose the representative to be
positively oriented, so that the right-hand-side of the above expres-
sion reduces to S(P). For top-level simplices (tets in 3D, triangles
in 2D), we use the convention that a positive volume corresponds to
a positively oriented simplex. We therefore require a volume form
which, together with an assignment of points to vertices, will allow
us to orient all tets. Recall that a volume form accepts three (for 3D;
two for 2D) vectors and returns either a positive or negative num-
ber (assuming the vectors are linearly independent). So the sign of
a 4-tuple is:

S(i0, i1, i2, i3) = S(Vol(pi1 − pi0 , pi2 − pi0 , pi3 − pi0)).

4 The Boundary Operator
The faces of a k-simplex are the (k−1)-simplices that are incident
on it, i.e., the subset of one lower dimension. Every k-simplex has
k + 1 faces. Each face corresponds to removing one integer from
the tuple, and the relative orientation of the face is (−1)i where i is
the index of the integer that was removed. To clarify:

• The faces of a tet +(t0, t1, t2, t3) are −(t0, t1, t2), +(t0, t1, t3),
−(t0, t2, t3), and +(t1, t2, t3).

• The faces of a triangle +( f0, f1, f2) are +( f0, f1),−( f0, f2), and
+( f1, f2).

• The faces of an edge +(e0,e1) are −(e0) and +(e1).

We can now define the boundary operator ∂ which maps simplices
to their their faces. Given the set of tets T we define ∂ 3 : T→ F4 as

∂ 3(+(i0, i1, i2, i3)) = {−(i0, i1, i2),+(i0, i1, i3),
−(i0, i2, i3),+(i1, i2, i3)}.

Similarly for ∂ 2 : F → E3 (which maps each triangle to its three
edges) and ∂ 1 : E→V2 (which maps each edge to its two vertices).

We represent these operators as sparse adjacency matrices (or,
equivalently, signed adjacency lists), containing elements of type
+1 and −1 only. So ∂ 3 is implemented as a matrix of size |F|× |T|
with 4 non-zero elements per column, ∂ 2 an |E|× |F| matrix with
3 non-zero elements per column, and ∂ 1 a |V|× |E| matrix with 2
non-zero elements per column (one +1 and one −1). The trans-
poses of these matrices are known as the coboundary operators,

and they map simplices to their cofaces—neighbor simplices of one
higher dimension. For example, (∂ 2)T maps an edge to the “pin-
wheel” of triangles incident on that edge.

Figure 3: The boundary operator identifies the faces of a simplex
as well as their relative orientations. In this illustration, arrows
indicate intrinsic orientations and signs indicate the relative orien-
tation of a face to a parent.

These matrices allow us to iterate over the faces or cofaces of any
simplex, by walking down the columns or across the rows, respec-
tively. In order to traverse neighbors that are more than one dimen-
sion removed (i.e., the tets adjacent to an edge or the faces adjacent
to a vertex) we simply concatenate the appropriate matrices, but
without the signs. (If we kept the signs in the matrix multiplication
any such consecutive product would simply return the zero matrix
reflecting the fact that the boundary of a boundary is always empty.)

5 Construction
Although we still need a few auxiliary wrapper and iterator data
structures to provide an interface to the mesh elements, the simplex
lists and boundary matrices contain the entirety of the topological
data of the mesh. All that remains, then, is to fill in this data.

We read in our mesh as a list of (x,y,z) vertex positions and a list of
4-tuples specifying the tets. Reading the mesh in this format elimi-
nates the possibility of many non-manifold scenarios; for example,
there cannot be an isolated edge that does not belong to a tet. We
assume that all integers in the range [0,n) appear at least once in
the tet list (this eliminates isolated vertices), and no integer outside
of this range is present.

Once T is read in, building E and F is trivial; for each tuple in T,
append all subsets of size 2 and 3 to E and F respectively. We must
be sure to avoid duplicates, either by using a unique associative
container, or by sorting the list afterward and removing duplicates.
Then the boundary operator matrices are constructed as follows:

for each simplex s
construct a tuple for each face f of s

as described in Section 4
determine the index i of f by locating

its representative
set the entry of the appropriate matrix

at row i, column s to S( f )

Figure 4 shows a complete example of a mesh and its associated
data structure.

6 DEC Operators

Now we discuss the implementation of the two most commonly
used DEC operators: the exterior derivative and the Hodge star.
As we will see, in the end these also amount to nothing more than
sparse matrices that can be applied to our form vectors.
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Figure 4: A simple mesh and all associated data structures.

6.1 Exterior Derivative

As we have seen earlier in the course, the discrete exterior derivative
is defined using Stokes’ theorem such that

∫

σ
dω =

∫

∂σ
ω

where ω is a k-form, and σ is a (k + 1)-simplex. In words, this
equation states that the evaluation of dω on a simplex is equal to
the evaluation of ω on the boundary of that simplex.

Let us try to understand this theorem with a few examples. Consider
a 0-form f , i.e., a function giving values at vertices. With that, d f is
a 1-form which can be integrated along an edge (say with endpoints
denoted a and b) and Stokes’ theorem states the well known fact

∫

[a,b]
d f = f (b)− f (a).

The right hand side is simply the evaluation of the 0-form f on the
boundary of the edge (i.e., its endpoints), with appropriate signs
indicating the orientation of the edge.

What about triangles? If f is a 1-form (one value per edge), then
d f is a 2-form that can be evaluated on a triangle abc as

∫

∆abc
d f =

∫

∂ (∆abc)
f

=
∫

[a,b]
f +

∫

[b,c]
f +

∫

[c,a]
f

= fab + fbc + fca

using the subscript notation from Section 3.2. Again, the right hand
side is simply the evaluation of the 1-form f on the boundary of the
triangle—its three edges.

We can restate the general form of the theorem for our discrete
forms as

dωσ = ∑
s∈∂σ

ωs

Written this way, it is easy to see that this can be implemented as
the multiplication of a form vector by the coboundary matrix ∂ T .

6.2 The Dual Mesh and the Hodge Star

Every complex has a dual. The dual of a simplicial complex is a cell
complex where primal k-simplices correspond to dual (n−k)-cells.
So in our case there are |V| dual polyhedra, |E| dual polygons, |F|
dual edges, and |T| dual vertices, corresponding to primal vertices,
edges, triangles, and tetrahedra, respectively (see Fig. 5). Note that,
since every dual cell is co-located with a primal simplex and the
cardinality is the same, in the code there is no explicit representa-
tion for the dual mesh. Where appropriate, dual cells are queried
through the corresponding primal simplex index.

Figure 5: There is one dual polyhedron for every primal vertex, one
dual polygon for every primal edge, one dual edge for every primal
triangle, and one dual vertex for every primal tetrahedron.

The operator that transforms a primal k-form into a dual (n− k)-
form is known as the Hodge star. There are many different kinds
of Hodge stars, the simplest of which is the diagonal Hodge star.

We again attempt to motivate the definition with some intuition.
When transferring a quantity from a primal simplex to a dual cell,
the quantities must “agree” somehow. Since these are integral val-
ues, simply setting the value on the dual to be equal to the value
on the primal does not make sense, as the domain of integration is
unrelated. Instead, we require that the integral density be equal. So,
if ω denotes the evaluation of a form on a primal k-simplex σ , then
!ω is the value on the dual (n− k)-cell σ̃ such that

ω
Vol(σ)

=
!ω

Vol(σ̃)

allowing us to define ! as

! =
Vol(dual)

Vol(primal)
.

In effect the diagonal Hodge star requires that the averages of the
integrand over the respective domains agree.

This is represented as a diagonal matrix so that, again, applica-
tion of the operator becomes a simple matrix-vector multiplication.
Note that when transforming quantities from the dual to the primal,
the inverse of this matrix is used. Since the matrix is diagonal we
only store the diagonal entries. There are as many of these as there
are simplices of the appropriate dimension. Consequently the diag-
onal Hodge star can be represented with vectors of length |V|, |E|,
|F|, and |T| respectively.

Discrete Differential Geometry: An Applied Introduction (Desbrun, Grinspun, Schröder, Wardetzky) SIGGRAPH Asia 2008

66



6.2.1 Calculating Dual Volumes

So far the entire implementation has been in terms of the combina-
torics of the mesh, but when constructing the Hodge star we must
finally introduce the geometry. After all, the purpose of the Hodge
star is to capture the metric. The volumes of the primal simplices
are straightforward: 1 for vertices, length for edges, area for tri-
angles, and volume for tetrahedra. The dual volumes are similarly
defined, but in order to avoid constructing the graph of the dual
mesh explicitly, we calculate the dual volumes as follows.

If we use the circumcentric realization of the dual mesh (i.e., dual
vertices are at the circumcenters of the associated tets), we can ex-
ploit the following facts when calculating the dual volumes.1

• A dual edge (dual of a primal triangle t) is linear, is normal to
t, and is collinear with the circumcenter of t (though the line
segment need not necessarily pass through t).

• A dual polygon (dual of a primal edge e) is planar, is orthogonal
to e, and is coplanar with the center of e (though it need not
intersect e).

• A dual cell (dual of a primal vertex v) is the convex intersection
of the half-spaces defined by the perpendicular bisectors of the
edges incident on v.

Just as with primal vertices, the volume of a dual vertex is defined to
be 1. For the others, we can conceptually decompose each cell into
pieces bounded by lower dimensional cells, and sum the volumes
of the pieces. For example, a dual polyhedron can be seen as the
union of some number of pyramids, where the base of each pyramid
is a dual polygon and the apex is the primal vertex. Similarly, a
dual polygon can be seen as a union of triangles with dual edges
at the bases, and dual edges can be seen as a union of (two) line
segments with dual vertices at the bases. The following pseudocode
illustrates how the volumes are calculated.

vec3 C( Simplex s ); // gives the circumcenter of s

// Initialize all dual volumes to 0.

// Dual edges
for each primal triangle f

for each primal tet t f incident on f
b← t f .dualVolume // 1
h← ||C( f )−C(t f )||
f .dualVolume← f .dualVolume+ 1

1 bh

// Dual polygons
for each primal edge e

for each primal triangle fe incident on e
b← fe.dualVolume
h← ||C(e)−C( fe)||
e.dualVolume← e.dualVolume+ 1

2 bh

// Dual polyhedra
for each primal vertex v

for each primal edge ev incident on v
b← ev.dualVolume
h← ||C(v)−C(ev)||
v.dualVolume← v.dualVolume+ 1

3 bh

Note that, even when dealing with the geometry of the mesh, this
part of the implementation still generalizes trivially to arbitrary di-
mension.

1 Circumcentric duals may only be used if the mesh satisfies the Delau-
nay criterion. If it does not, a barycentric dual mesh may be used. However,
care must be taken if a barycentric dual mesh is used, as dual edges are no
longer straight lines (they are piecewise linear), dual faces are no longer
planar, and dual cells are no longer necessarily convex.

7 Summary

All the machinery discussed above can be summarized as fol-
lows:

• k-forms as well as the Hodge star are represented as vectors of
length |V|, |E|, |F|, and |T|;

• the discrete exterior derivative is represented as (transposes of)
sparse adjacency matrices containing only entries of the form
+1 and −1 (and many zeros); the adjacency matrices are of
dimension |V|× |E| (boundary of edges), |E|× |F| (boundary of
triangles), and |F|× |T| (boundary of tets).

In computations these matrices then play the role of operators such
as grad, curl, and div and can be composed to construct operators
such as the Laplacian (and many others).

While the initial setup of these matrices is best accomplished with
associative containers, their final form can be realized with standard
sparse matrix representations. Examples include a compressed row
storage format, a vector of linked lists (one linked list for each row),
or a two dimensional linked list (in effect, storing the matrix and its
transpose simultaneously) allowing fast traversal of either rows or
columns. The associative containers store integer tuples together
with orientation signs. For these we suggest the use of sorted inte-
ger tuples (the canonical representatives of each simplex). Appro-
priate comparison operators needed by the container data structures
simply perform lexicographic comparisons.

And that’s all there is to it!
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Chapter 9:
Stable, Circulation-Preserving, Simplicial Fluids

Sharif Elcott, Yiying Tong∗, Eva Kanso†, Peter Schröder, Mathieu Desbrun
Caltech

Figure 1: Discrete Fluids: we present a novel geometric integration scheme for fluids applicable to tetrahedral meshes of arbitrary domains.
Aside from resolving the boundaries precisely, our approach also provides an accurate treatment of vorticity through a discrete preservation
of Kelvin’s circulation theorem. Here, a hot smoke cloud rises inside a bunny shaped domain of 7K vertices (32K tetrahedra—equivalent
complexity of a 193 regular grid), significantly reducing the computational cost of the simulation for such an intricate boundary compared to
regular grid-based techniques (0.47s/frame on a Pentium 4, 3GHz).

Abstract
Visual quality, low computational cost, and numerical stability are
foremost goals in computer animation. An important ingredient
in achieving these goals is the conservation of fundamental motion
invariants. For example, rigid and deformable body simulation ben-
efits greatly from conservation of linear and angular momenta. In
the case of fluids, however, none of the current techniques focuses
on conserving invariants, and consequently, they often introduce a
visually disturbing numerical diffusion of vorticity. Visually just as
important is the resolution of complex simulation domains. Doing
so with regular (even if adaptive) grid techniques can be computa-
tionally delicate. In this paper, we propose a novel technique for
the simulation of fluid flows. It is designed to respect the defining
differential properties, i.e., the conservation of circulation along ar-
bitrary loops as they are transported by the flow. Consequently, our
method offers several new and desirable properties: arbitrary sim-
plicial meshes (triangles in 2D, tetrahedra in 3D) can be used to
define the fluid domain; the computations involved in the update
procedure are efficient due to discrete operators with small support;
and it preserves discrete circulation avoiding numerical diffusion
of vorticity.

1 Introduction
Conservation of motion invariants at the discrete computational
level, e.g., linear and angular momenta in solid mechanics, is now
widely recognized as being an important ingredient in the construc-
tion of numerically stable simulations with a high degree of visual
realism [Marsden and West 2001]. Much of the progress in this
direction has been enabled by a deeper understanding of the un-
derlying geometric structures and how they can be preserved as we
go from continuous models to discrete computational realizations.
So far, advances of this type have yet to deeply impact fluid flow
simulations. Current methods in fluid simulation are rarely able to
conserve defining physical properties. Consider, for example, the
need in many methods to continually project the numerically up-
dated velocity field onto the set of divergence free velocity fields;

∗Now at Michigan State University.
†Now at the University of Southern California.

or the need to continually reinject vorticity lost due to numerical
dissipation as a simulation progresses. In this paper we introduce a
novel, geometry-based algorithm for fluid simulation which, among
other desirable properties, exactly preserves vorticity at a discrete
level.

1.1 Previous Work

Fluid Mechanics has been studied extensively in the scientific com-
munity both mathematically and computationally. The physical be-
havior of incompressible fluids is usually modeled by the Navier
Stokes (NS) equations for viscous fluids and by the Euler equations
for inviscid (non-viscous) fluids. Numerical approaches in compu-
tational fluid dynamics typically discretize the governing equations
through Finite Volumes (FV), Finite Elements (FE) or Finite Dif-
ference (FD) methods. We will not attempt to review the many
methods proposed (an excellent survey can be found in [Langtan-
gen et al. 2002]) and instead focus on approaches used for flu-
ids in computer graphics. Some of the first fluid simulation tech-
niques were based on vortex blobs [Yaeger et al. 1986], vortex
particles [Gamito et al. 1995] and Finite Differences [Foster and
Metaxas 1997]. To circumvent the ill-conditioning of the latter
approach for large time steps and achieve unconditional stability,
Jos Stam [1999; 2001] introduced to the graphics community the
method of characteristics for fluid advection and the Helmholtz-
Hodge decomposition [Chorin and Marsden 1979] to ensure the
divergence-free nature of the fluid motion. The resulting algorithm,
called Stable Fluids, is an extremely successful semi-Lagrangian
approach based on a regular grid Eulerian space discretization, that
led to many refinements and extensions which have contributed
to the enhanced visual impact of fluid animations. Among oth-
ers, these include the use of staggered grids and monotonic cubic
interpolation [Fedkiw et al. 2001]; improvements in the handling
of interfaces [Foster and Fedkiw 2001; Guendelman et al. 2005];
extensions to curved surfaces [Stam 2003; Shi and Yu 2004] and
visco-elastic objects [Goktekin et al. 2004]; as well as goal oriented
control of fluid motion [Treuille et al. 2003; McNamara et al. 2004;
Pighin et al. 2004; Shi and Yu 2005].
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1.2 Shortcomings of Stable Fluids

However, the Stable Fluids technique is not without drawbacks.
Chief among them is the difficulty of accommodating complex do-
main boundaries with regular grids, as addressed recently with hy-
brid meshes [Feldman et al. 2005]. Local adaptivity [Losasso et al.
2004] can greatly help, but the associated octree structures require
significant overhead. Note that regular partitions of space (adap-
tive or not) can suffer from preferred direction sampling, leading to
visual artifacts similar to aliasing in rendering.

Additionally, the different variants of the original Stable Fluids al-
gorithm [Stam 1999] are all based on a class of discretization ap-
proaches known in Computational Fluid Dynamics as fractional
step methods. In order to numerically solve the Euler equations
over a time step, they proceed in two stages. They first up-
date the velocity field assuming the fluid is inviscid and disre-
gard the divergence-free constraint. Then, the resulting veloc-
ity is projected onto the closest divergence-free flow (in the L 2

sense) through an exact Helmholtz-Hodge decomposition. De-
spite the simplicity of this fractional integration, one of its con-
sequences is excessive numerical diffusion: advecting velocity
before reprojecting onto a divergence-free field creates signifi-
cant energy loss [Chang et al. 2002]. While this shortcoming
is not a major issue in graphics as the visual impact of such a
loss is not always significant, another consequence of the frac-
tional integration is an excessive diffusion of vorticity. This last
issue affects the motion significantly, since the presence of vor-
tices in liquids and volutes in smoke is one of the most impor-
tant visual cues of our perception of fluidity. Vorticity confine-
ment [Steinhoff and Underhill 1994; Fedkiw et al. 2001] was de-
signed to counteract this diffusion through local reinjection of vor-
ticity. Unfortunately, it is hard to control how much can safely be
added back without affecting stability or plausibility of the results.
Adding vortex particles can further reduce this loss [Selle et al.
2005], but adds computational cost to the Stable Fluids method.
One can understand this seemingly in-
evitable numerical diffusion through
the following geometric argument:
the solutions of Euler equations are
geodesic (i.e., shortest) paths on the
manifold of all possible divergence-free flows; thus, advecting the
fluid out of the manifold (to simulate a time integration over a small
time step) is not a proper substitute to this intrinsic constrained min-
imization, even if the post re-projection is, in itself, exact. For
a more detailed numerical analysis of this flaw, see [Chang et al.
2002].

1.3 Contributions

In this paper we show that a careful setup of discrete differential
quantities, designed to respect structural relationships such as vec-
tor calculus identities, leads in a direct manner to a numerical sim-
ulation method which respects the defining geometric structure of
the fluid equations. A key ingredient in this approach is the location
of physical quantities on the appropriate geometric structures (i.e.,
vertices, edges, faces, or cells). This greatly simplifies the imple-
mentation as all variables are intrinsic. It also ensures that the ap-
proach works for curved manifolds without any changes. With the
help of a discrete calculus on simplicial complexes we construct a
novel integration scheme which employs intrinsically divergence-
free variables. Thus, our time integration method removes the need
to enforce the usual divergence-free constraint: it preserves circula-
tion (and consequently vorticity) by construction while being sim-
ple and numerically efficient, achieving high visual quality even for
large time steps. Although our approach shares the same algorith-
mic structure as Stable Fluids based methods (use of backward path
tracing and sparse linear systems), it fundamentally differs from

previous techniques on the following points:

• our technique is based on a classical vorticity formula-
tion of the Navier-Stokes and Euler equations; unlike most
vorticity-based methods in CG, our approach is Eulerian as
we work only with a fixed mesh and not a Lagrangian repre-
sentation involving vorticity particles (or similar devices);

• we adopt an unconditionally-stable, semi-Lagrangian back-
ward advection strategy as in Stable Fluids; however, in con-
trast to Stable Fluids, we do not point-sample velocity, but
rather compute integrals of vorticity; this simple change re-
moves the need to enforce incompressibility of the velocity
field through projection; note that this convenient recourse to
a vorticity-based formulation has been proposed by multiple
authors (see, for instance, [Weißmann 2006; Angelidis et al.
2006; Park and Kim 2005; Angelidis et al. 2005; E and Liu
1996b; E and Liu 1996a]).

• our strategy exactly preserves circulation along discrete
loops in the mesh; capturing this geometric property of fluid
dynamics guarantees that vorticity does not get dissipated as is
typically the case in Stable Fluids; consequently no vorticity
confinement (or other post processes) are required to maintain
this important element of visual realism;

• our method has multiple advantages from an implementa-
tion point of view: it handles arbitrary meshes (regular grids,
hybrid meshes [Feldman et al. 2005], and even cell com-
plexes) with non-trivial topology; the operators involved have
very small support leading to very sparse linear systems; all
quantities are stored intrinsically (scalars on edges and faces)
without reference to global or local coordinate frames (unlike
recent work on Finite Volume fluid simulation [Wendt et al.
2005]). These novel features are achieved with a computa-
tional cost similar to previous Stable Fluids approaches.

Figure 2: Domain Mesh: our fluid simulator uses a simplicial mesh
to discretize the equations of motion; (left) the domain mesh (shown
as a cutaway view) used in Fig. 1; (middle) a coarser version of the
flat 2D mesh used in Fig. 7; (right) the curved triangle mesh used
in Fig. 11.

The organization of this paper is as follows. In Section 2, we moti-
vate our approach through a brief overview of the theory and com-
putational algorithms for Fluid Mechanics. We present a novel
discretization of fluid mechanics and a circulation-preserving in-
tegration algorithm in Section 2.2. The computational machinery
required by our approach is developed in Section 3, while the algo-
rithmic details are given in Section 4. Several numerical examples
are shown and discussed in Section 5.

2 Of Motion and Discrete Flows
Before going into the details of our algorithm we discuss the under-
lying fluid equations with their relevant properties and how these
can be captured over discretized domains.

2.1 Geometry of Fluid Motion

Euler Fluids Consider an inviscid, incompressible, and homoge-
neous fluid on a domain D in 2 or 3D. The Euler equations, gov-
erning the motion of this fluid (with no external forces for now, and
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slip conditions on boundaries), can be written as:

∂u
∂ t

+u ·∇u = −∇p ,

div(u) = 0 , u ‖ ∂D .

(1)

We assume unit density (ρ = 1) and use u to denote the fluid ve-
locity, p the pressure, and ∂D the boundary of the fluid region D .
The pressure term in Eq. (1) can be dropped easily by rewriting the
Euler equations in terms of vorticity. Recall that traditional vector
calculus defines vorticity as the curl of the velocity field, ωωω = ∇×u.
Taking the curl (∇×) of Eq.(1), we obtain

∂ωωω

∂ t
+Luωωω = 0 ,

ωωω = ∇×u , div(u) = 0 , u ‖ ∂D .

(2)

where Luωωω is the Lie derivative, equal in our case to u ·∇ωωω −ωωω ·
∇u. In this form, this vorticity-based equation states that vortic-
ity is simply advected along the fluid flow.1 Note that Equation (2)
is equivalent to the more familiar Dωωω

Dt = ωωω ·∇u, and therefore al-
ready includes the vortex stretching term appearing in Lagrangian
approaches. Roughly speaking, vorticity measures the local spin of
a fluid parcel. Therefore, vorticity advection means that this local
spin moves with the flow.

Since the integral of vorticity on a given bounded surface equals
(by Stokes’ theorem) the circulation around the bounding loop of
the surface, one can explain the geometric nature of an ideal fluid
flow in particularly simple terms: the circulation around any closed
loop C is conserved throughout the motion of this loop in the fluid.
This key result is known as Kelvin’s circulation theorem, and is
usually written as:

Γ(t) =
∮
C (t)

u ·dl = constant , (3)

where Γ(t) is the circulation of the velocity on the loop C at time
t as it gets advected in the fluid. This will be the key to our time
integration algorithm.

Viscous Fluids In contrast to ideal fluids, incompressible viscous
fluids generate very different fluid behaviors. They can be modelled
by the Navier-Stokes equations (compare with Eq. (1)):

∂u
∂ t

+u ·∇u = −∇p+ν∆u ,

div(u) = 0 , u|∂D = 0 .

(4)

where ∆ denotes the Laplace operator, and ν is the kinematic vis-
cosity. Note that different types of boundary conditions can be
added depending on the chosen model. Despite the apparent simi-
larity between these two models for fluid flows, the added diffusion
term dampens the motion, resulting in a slow decay of circulation.
This diffusion also implies that the velocity of a viscous fluid at the
boundary of a domain must be null, whereas an inviscid fluid could
have a non-zero tangential component on the boundary. Here again,
one can avoid the pressure term by taking the curl of the equations
(compare with Eq. (2)):

∂ωωω

∂ t
+Luωωω = ν∆ωωω ,

ωωω = ∇×u , div(u) = 0 , u|∂D = 0 .

(5)

1Note that this is a more canonical characterization of the motion than
the velocity-based one: the latter was also an advection but under the addi-
tional constraint of keeping the velocity field divergence-free, which is the
reason for the gradient of pressure.

2.2 Discrete Setup

For a discrete time and space numerical simulation of Eqs. (2)
and (5) we need a discretized geometry of the domain (given as
a simplicial mesh for instance), appropriate discrete analogs of ve-
locity u and vorticity fields ωωω , along with the operators which act on
them. We will present our choices before describing the geometry-
based time integration approach.

2.2.1 Space Discretization

We discretize the spatial domain in which the flow takes place us-
ing a locally oriented simplicial complex, i.e., either a tet mesh for
3D domains or a triangle mesh for 2D domains, and refer to this
discrete domain as M (see Figure 2). The domain may have non-
trivial topology, e.g., it can contain tunnels and voids (3D) or holes
(2D), but is assumed to be compact. To ensure good numerical
properties in the subsequent simulation we require the simplices of
M to be well shaped (aspect ratios bounded away from zero). This
assumption is quite common since many numerical error estimates
depend heavily on the element quality. We use meshes generated
with the method of [Alliez et al. 2005]. Collectively we refer to the
sets of vertices, edges, triangles, and tets as V , E, F , and T .

We will also need a dual mesh. It associates with each original
simplex (vertex, edge, triangle, tet, respectively) its dual (dual cell,
dual face, dual edge, and dual vertex, respectively—see Fig. 3).
The geometric realization of the dual mesh uses tet circumcenters
as dual vertices and Voronoi cells as dual cells; dual edges are line
segments connecting dual vertices across shared tet faces and dual
faces are the faces of the Voronoi cells. Notice that storing values
on primal simplices or on their associated dual cells is conceptually
equivalent, since both sets have the same cardinality. We will see in
Section 3 that corresponding primal and dual quantities are related
through a simple (diagonal) linear operator.

Figure 3: Primal and Dual Cells: the simplices of our mesh are
vertices, edges, triangles and tets (top); their circumcentric duals
are dual cells, dual faces, dual edges and dual vertices (bottom).

2.2.2 Intrinsic Discretization of Physical Quantities

In order to faithfully capture the geometric structure of fluid me-
chanics on the discrete mesh, we define the usual physical quan-
tities, such as velocity and vorticity, through integral values over
the elements of the mesh M . This is the sharpest departure from
traditional numerical techniques in CFD: we not only use values at
nodes and tets (as in FEM and FVM), but also allow association
(and storage) of field values at any appropriate simplex. Depend-
ing on whether a given quantity is defined pointwise, or as a line,
area or volume density, the corresponding discrete representation
will “live” at the associated 0, 1, 2, and 3 dimensional mesh el-
ements. With this in mind we use a simple discretization of the
physical quantities of fluid mechanics based on fluxes associated to

Discrete Differential Geometry: An Applied Introduction (Desbrun, Grinspun, Schröder, Wardetzky) SIGGRAPH Asia 2008

70



faces, reminiscent of Finite Volume methods (see also [Nicolaides
and Wu 1997] for a similar setup for Div-Curl equations).

Velocity as Discrete Flux To encode a coordinate free (intrinsic)
representation of velocity on the mesh we use flux, i.e., the mass of
fluid transported across a given surface area per unit time. Note that
this makes flux an integrated, not pointwise, quantity. On the dis-
crete mesh, fluxes are associated with the triangles of the tet mesh.
Thus fluid velocity u is treated as a 2-form and represented as a
vector U of scalar values on faces (size |F |). This coordinate-free
point of view, also used in [Feldman et al. 2005], is reminiscent of
the staggered grid method used in [Fedkiw et al. 2001] and other
non-collocated grid techniques (see [Goktekin et al. 2004]). In the
staggered grid approach one does not store the x,y,z components of
a vector at nodes but rather associates them with the corresponding
grid faces. We may therefore think of the idea of storing fluxes on
the triangles of our tet mesh as a way of extending the idea of stag-
gered grids to the more general simplical mesh setting. This was
previously exploited in [Bossavit and Kettunen 1999] in the context
of E&M computations. It also makes the usual no-transfer bound-
ary conditions easy to encode: boundary faces experience no flux
across them. Encoding this boundary condition for velocity vectors
stored at vertices is far more cumbersome.

Divergence as Net Flux on Tets Given the incompressibility of the
fluid, the velocity field must be divergence-free (∇ ·u = 0). In the
discrete setting, the integral of the divergence over a tet becomes
particularly simple. According to the generalized Stokes’ theorem
this integral equals the sum of the fluxes on all four faces: the dis-
crete notion of divergence is therefore simply the net flux for each
tet. Divergence can therefore be stored as a 3-form, i.e., as a value
associated to each tet (a vector of cardinality |T |). The notion of
incompressibility becomes particularly intuitive: whatever gets in
each tet must be compensated by whatever comes out (see Fig. 4).

Figure 4: Discrete Physical Quantities: in our geometric discretiza-
tion, fluid flux lives on faces (left), divergence lives on tets (middle),
and vorticity lives on edges (right).

Vorticity as Flux Spin Finally we need to define vorticity on the
mesh. To see the physical intuition behind our definition, consider
an edge in the mesh. It has a number of faces incident on it, akin to a
paddle wheel (see Figure 4, right). The flux on each face contributes
a torque to the edge. The sum of all these, when going around an
edge, is the net torque that would “spin” the edge. We can thus give
a physical definition of vorticity as a weighted sum of fluxes on all
faces incident to a given edge. This quantity is now associated with
primal edges—or, equivalently, dual faces—and is thus represented
by a vector Ω of size |E|. Note that we will talk about discrete
vorticity from now on to mean “area integral of the vorticity vector
field”, or equivalently, “integral of the vorticity seen as a 2-form”.

In Section 3, we will see that these physical intuitions can be for-
mally derived from simple algebraic relationships.

2.3 Geometric Integration of Fluid Motion

Since we are using the vorticity formulation of the fluid equations
(Eqs. (2) or (5)) the time integration algorithm must update the dis-
crete vorticity variables which are stored on each primal edge. We
have seen that the fluid equations state that vorticity is advected by

the velocity field. The fundamental idea of our geometric integra-
tion algorithm is thus to ensure that Kelvin’s theorem holds in the
discrete setting: the circulation around any loop in the fluid remains
constant as the loop is advected. This can be achieved by backtrack-
ing loops: for any given loop at the current time, determine its back-
tracked image in the velocity field (“where did it come from?”) and
compute the circulation around the backtracked loop. This value
is then assigned as the circulation around the original loop at the
present time, i.e., circulation is properly advected by construction
(see Figure 5 for a depiction of this loop advection idea).

Since we store vorticity on primal edges, a natural choice for these
loops are the bounding loops of the dual faces associated to each
primal edge (see Figure 3). Notice that these loops are polylines
formed by sequences of dual vertices around a given primal edge.
Consequently an efficient implementation of this idea requires only
that we backtrack dual vertices in the velocity field (the same
way primal vertices are backtracked in the traditional Stable Flu-
ids method). Once these positions are known all backtracked dual
loops associated to primal edges are known. These Voronoi loops
can indeed generate any discrete, dual loop: the sum of adjacent
loops is a larger, outer loop as the interior edges cancel out due to
opposite orientation as sketched in Fig. 5(right). The evaluation of
circulation around these backtracked loops will be quite straight-
forward. Invoking Stokes’ theorem, the integral of vorticity over
a dual face equals the circulation around its boundary. With this
observation we can achieve our goal of updating vorticities and, by
design, ensured a discrete version of Kelvin’s theorem. The algo-
rithmic details of this simple geometric approach to time integration
of the equations of motion for fluids will be given in Section 4.

Figure 5: Kelvin’s Theorem: (left) in the continuous setting, the cir-
culation on any loop being advected by the flow is constant. (mid-
dle) our discrete integration scheme enforces this property on each
Voronoi loop, (right) thus on any discrete loop.

3 Computational Machinery
Now that we have described our choices of spatial and physical dis-
cretizations, along with a way to use them to integrate the fluid’s
motion, we must manipulate the numerics involved in a principled
manner to guarantee proper physical behavior. In this section, we
point out that the intuitive definition of our physical quantities liv-
ing at the different simplices of a mesh can be made precise through
the definition of a discrete differential structure. Consequently, the
basic operators to go from fluxes to the divergence, curl, or Lapla-
cian of the velocity field can be formally defined through the use of
discrete differential forms. We will mostly focus on presenting the
practical implementation of the few operators we need; more im-
portantly, we will show that this implementation reduces to simple
linear algebra with very sparse matrices.

3.1 Discrete Differential Structure
Integrals and Forms In Section 2.2, we have opted for manip-
ulating the physical quantities in the form of a line, surface, and
volume integral computed directly on our meshed domain to ren-
der the setup entirely intrinsic, i.e., with no need for vector fields
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to be stored with respect to arbitrary coordinate frames. Such an
integral represents the evaluation of a mathematical entity called
a differential form. In the continuous three-dimensional setting, a
0-form is simply a function on that 3D space. A 1-form, or line-
form, is a quantity that can be evaluated through integration over a
curve. Thus a 1-form can be thought of as a proxy for a vector field,
and its integral over a curve becomes the circulation of this vector
field. A 2-form, or area-form, is to be integrated over a surface,
that is, it can be viewed as a proxy for a vector perpendicular to
that surface (and its evaluation becomes the flux of that vector field
through the surface); finally, a 3-form, or volume-form, is to be in-
tegrated over a volume and can be viewed as a proxy for a function.
Classic calculus and vector calculus can then be substituted with
a special calculus involving only differential forms, called exterior
calculus—the basis of Hodge theory and modern differential geom-
etry (for a comprehensive discussion, see, for example, [Abraham
et al. 1988]).

Discrete Forms and Their Representation However, in our
framework, the continuous domain is replaced (or approximated)
by a mesh, the only structure we can work with. Therefore, the
integrated physical values we store on the mesh corresponds to dis-
crete differential k-forms [Desbrun et al. 2006]. A discrete differ-
ential k-form, k = 0,1,2, or 3, is the evaluation (i.e., the integral)
of the differential k-form on all k-cells, or k-simplices. In practice,
discrete k-forms can simply be considered as vectors of numbers as-
sociated to the simplices they live on: 0-forms live on vertices, and
are expressed as a vector of length |V |; correspondingly, 1-forms
live on edges (length |E|), 2-forms live on faces (length |F |), and
3-forms live on tetrahedra (length |T |). Dual forms, i.e., forms that
we will evaluate on the dual mesh, are treated similarly. The reader
should now realize that in our discretization of physical quantities,
the notion of flux that we described is thus a primal 2-form (inte-
grated over faces), while its vorticity is a dual 2-form (integrated
over dual faces), and its divergence becomes a primal 3-form (inte-
grated over tetrahedra).

Discrete Differential Calculus on Simplicial Meshes These dis-
crete forms can now be used to build the tools of calculus through
Discrete Exterior Calculus (DEC), a coherent calculus mimicking
the continuous setting that only uses discrete combinatorial and ge-
ometric operations [Munkres 1984; Hirani 2003]. At the core of its
construction is the definition of a discrete d operator (analog of the
continuous exterior derivative), and a discrete Hodge star, which
will allow us to move values from the primal mesh to the dual mesh
and vice-versa. For a more comprehensive introduction to DEC and
the use of discrete differential forms, we refer the interested reader
to [Desbrun et al. 2006] and [Bochev and Hyman 2006].

3.2 Two Basic Operators

The computations involved in our approach only require the defi-
nition of two basic operators: one is the exterior derivative d, nec-
essary to compute derivatives, like gradients, divergences, or curls;
the other is the Hodge star, to transfer values from primal simplices
to dual simplices.

Exterior Derivative d Given an oriented mesh, we implement our
first operator by simply assembling the incidence matrices of the
mesh. These will act on the vectors of our discrete forms and im-
plement the discrete exterior derivative operator d as explained in
more details in Appendix A. For our 3D implementation, there are
three sparse matrices involved, which contain only entries of type
0, +1, and −1. Care is required in assembling these incidence ma-
trices, as the orientation must be taken into account in a consistent
manner [Elcott and Schröder 2006]. The first one is d0, the trans-
pose of the incidence matrix of vertices and edges (|V | rows and
|E| columns). Each row of the transpose contains a single +1 and

−1 for the end points of the given edge (and zero otherwise). The
sign is determined from the orientation of the edge. Similarly, the
second matrix d1 is the transpose of the incidence matrix of edges
and faces (|E| rows and |F | columns), with appropriate +1 and −1
entries according to the orientation of edges as one moves around a
face. More generally dk is the transpose of the incidence matrix of
k-cells on k +1-cells. A simple debugging sanity check (necessary
but not sufficient) is to compute consecutive products: d0 followed
by d1 must be a matrix of zeros; d1 followed by d2 must similarly
give a zero matrix. This reflects the fact that the boundary of any
boundary is the empty set. It also corresponds to the calculus prop-
erty that curl of grad is zero as is divergence of curl (see [Desbrun
et al. 2006]).

Hodge Star The second operator we need will allow us to transfer
quantities back and forth between the primal and dual mesh. We can
project a primal k-form to a conceptually-equivalent dual (3− k)-
form with the Hodge star. We will denote ?0 (resp., ?1,?2,?3) the
Hodge star taking a 0-form (resp., 1-form, 2-form, and 3-form)
to a dual 3-form (resp., dual 2-form, dual 1-form, dual 0-form).
In this paper we will use what is known as the diagonal Hodge
star [Bossavit 1998] as it offers an acceptable approximation at
very little computational cost. This operator simply scales what-
ever quantity that is stored on mesh cells by the volumes of the
corresponding dual and primal cells: let vol(.) denote the volume
of a cell (i.e., 1 for vertices, length for edges, area for triangles, and
volume for tetrahedra), then

(?k)ii = vol(σ̃i)/vol(σi)

where σi is any primal k-simplex, and σ̃i is its dual (all other terms,
off the diagonal, are zero). These linear operators, describing the lo-
cal metric, are diagonal and can be stored as vectors. Conveniently,
the inverse matrices going from dual to primal quantities are trivial
to compute for this diagonal Hodge star.

Overloading Operators Note that both the dk and the ?k operators
are typed: the subscript k is implicitly determined by the cardinal-
ity of the argument. For example, the velocity field u is a 2-form
stored as a vector U of cardinality |F |. Consequently the expression
dU implies use of the |T |× |F |-sized matrix d2. In the implemen-
tation this is accomplished with operator overloading (in the sense
of C++). We will take advantage of this in the paper from now on
and drop the dimension subscripts.

3.3 Offline Matrix Setup

With these overloads of d and ? in place, we can now set up the only
two matrices (C and L) that will be used during simulation. They
respectively represent the discrete analogs of the curl and Laplace
operators [Desbrun et al. 2006].

Curl Since we store fluxes on faces and gather them in a vector
U , the circulation of the vector field u can be derived as values
on dual edges through ?U . Vorticity, typically thought of as a 2-
form in fluid mechanics [Marsden and Wenstein 1983], is easily
computed by then summing this circulation along the dual edges
that form the boundary of a dual face. In other words, ωωω = ∇×u
becomes, in terms of our discrete operators, simply Ω = dT ?U . We
therefore create a matrix C = dT ? offline, i.e., the composition of
an incidence matrix with a diagonal matrix.

Laplacian The last matrix we need to define (to handle viscous
fluids) is the discrete Laplacian. The discrete analog of ∆φφφ = (∇∇·
−∇×∇×)φφφ =ωωω is simply (?d?−1dT ?+dT ?d) Φ = Ω as explained
in Appendix B. This last matrix, a direct composition of incidence
and diagonal matrices, is precomputed and stored as L for later use.
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4 Implementation
To facilitate a direct implementation of our integration scheme, we
provide pseudocode in Figure 6. A series of implementation details
follow, providing comments on specific steps and how these relate
to the machinery developed in earlier sections.

//Load mesh and build incidence matrices

C← dT ?

L← ?d?−1dT ?+dT ?d

//Time stepping h
loop

//Advect Vorticities

for each dual vertex (tet circumcenter) ci

ĉi← PathTraceBackwards(ci);
vi← InterpolateVelocityField(ĉi);

for each dual face f
Ω f ← 0
for each dual edge (i, j) on the boundary of f

Ω f ←Ω f + 1
2 (vi +v j) · (ĉi− ĉ j);

//Add forces

Ω←Ω+h C F

//Add diffusion for Navier-Stockes

Ψ← SolveCG( (? −ν h L)Ψ = Ω );
Ω← ? Ψ

//Convert vorticities back to fluxes

Φ← SolveCG( L Φ = Ω );
U ← dΦ;

Figure 6: Pseudocode of our fluid motion integrator (SolveCG calls
a linear solver, typically based on the Conjugate Gradient method).

4.1 Converting Vorticities back to Fluxes

After we update the vorticity on each dual Voronoi face of the do-
main through semi-Lagrangian backtracing and resampling via in-
tegration, the resulting vorticity field needs to be converted back to
a velocity field that the next time step will utilize to backtrack vor-
ticity once again. Since the vorticities Ω are related to the fluxes
U through Ω = dT ?U , we can directly solve for the fluxes via a
Poisson equation as explained in detail in Appendix B. The linear
system involved being sparse and symmetric, a Conjugate Gradient
is recommended for efficiency. Note that a thresholding of the vor-
ticity values stored on each dual face can be also performed during
this step to offer a simple way to control any excessive amount of
vorticity in the flow (due to exaggerated user-added external forces,
for instance).

4.2 External Body Forces

The use of external body forces, like buoyancy, gravity, or stirring,
is common practice to create interesting motions. Incorporating
external forces into Eq. (4) is straightforward, resulting in:

∂u
∂ t

+u ·∇u = −∇p+ν∆u+ f .

Again, taking the curl of this equation allows us to recast this equa-
tion in terms of vorticity:

∂ωωω

∂ t
+Luωωω = ν∆ωωω +∇× f . (6)

Thus, we note that an external force influences the vorticity only
through the force’s curl (the ∇ · f term is compensated for by the
pressure term keeping the fluid divergence-free). Thus, if we ex-
press our forces through the vector F of their resulting fluxes in

each face, we can directly add the forces to the domain by incre-
menting Ω by the circulation of F over the time step h, i.e.:

Ω←Ω+h C F.

4.3 Adding Diffusion
If we desire to simulate a viscous fluid, we must add the diffusion
term present in Eq. (5). Note that previous methods were sometimes
omitting this term because their numerical dissipation was already
creating (uncontrolled) diffusion. In our case, however, this diffu-
sion needs to be properly handled if viscosity is desired. This is eas-
ily done through an unconditionally-stable implicit integration as
done in Stable Fluids (i.e., we also use a fractional step approach).
Using the discrete Laplacian (given in Appendix B, Eq. (8)) and the
current vorticity Ω, we simply solve for the diffused vorticity Ω′

using the following linear system:

(?−νhL) ?−1
Ω
′ = Ω.

4.4 Interpolation of Velocity
In order to perform the backtracking of dual vertices we must first
define a velocity field over the entire domain using the data we have
on primal faces (fluxes). This can be done by computing a unique
velocity vector for each dual vertex and then using barycentric in-
terpolation of these vectors over each dual Voronoi cell [Warren
et al. 2007], defining a continuous velocity field over the entire do-
main. This velocity field can be used to backtrack dual vertices as
well as transport particles or dyes (e.g., for visualization purposes)
with standard methods.

To see that such a vector, one for each dual vertex, is well defined
consider the following argument. The flux on a face corresponds
under duality (via the Hodge star) to a circulation along the dual
edge of this face. Now, there is a linear relation between fluxes per
tetrahedra due to the incompressibility condition (fluxes must sum
to zero). This translates directly to a linear condition on the four
circulations at each tetrahedra too. Thus, there is a unique vector
(with three components) at the dual vertex whose projection along
the dual edges is consistent with the observed circulations.

Relation to k-form Basis Functions The standard method to in-
terpolate k-form data in a piecewise linear fashion over simplicial
complexes is based on Whitney forms [Bossavit 1998]. In the case
of primal 2-forms (fluxes) this results in a piecewise constant (per
tetrahedra) velocity field. Our argument above, using a Voronoi cell
based generalized barycentric interpolation of dual 1-forms (circu-
lation), in fact extends the Whitney form machinery to the dual set-
ting. This is a novel contribution, recently exploited in [Klingner
et al. 2006], which may be useful as well in other computational ap-
plications of discrete forms. We note that the generalized barycen-
tric coordinates have linear accuracy [Warren et al. 2007], an im-
portant requirement in many settings.

4.5 Handling Boundaries
The algorithm as described above does not constrain the bound-
aries, thus achieving “open” boundary conditions. No-transfer
boundary conditions are easily imposed by setting the fluxes
through the boundary triangles to zero. Non-zero flux boundary
conditions (i.e., forced fluxes through the boundary as in the case of
Fig. 7) are more subtle. First, remark that all these boundary fluxes
must sum to zero; otherwise, we would have little chance of getting
a divergence-free fluid in the domain. Since the total divergence
is zero, there exists a harmonic velocity field satisfying exactly
these conditions. This is a consequence of the Helmholtz-Hodge
decomposition theorem with normal boundary conditions [Chorin

Discrete Differential Geometry: An Applied Introduction (Desbrun, Grinspun, Schröder, Wardetzky) SIGGRAPH Asia 2008

73



and Marsden 1979]. Thus, this harmonic part h can be computed
once and for all through a Poisson equation using the same setup as
described in Appendix B. This precomputed velocity field allows us
to deal very elegantly with these boundary conditions: we simply
perform the same algorithm as we described by setting all boundary
conditions to zero (with the exception of backtracking which takes
the precomputed velocity into account), and reinject the harmonic
part at the end of each time step (i.e., add h to the current velocity
field).

Viscous Fluids near Boundaries The Voronoi cells at the bound-
aries are slightly different from the usual, interior ones, since
boundary vertices do not have a full 1-ring of tetrahedra. In the
case of NS equations, this has no significant consequence: we set
the velocity on the boundary to zero, resulting also in a zero circu-
lation on the dual edges on the boundary. The rest of the algorithm
can be used as is.

Inviscid Fluids near Boundaries For Euler equations, however,
the tangential velocity at the boundary is not explicitly stored any-
where. Consequently, the boundary Voronoi faces need an addi-
tional variable to remedy this lack of information. We store in these
dual faces the current integral vorticity. From this additional infor-
mation given at time t = 0, we can deduce at each later time step the
missing circulation on the boundary: since the circulation over the
inside dual edges is known, and since the total integral must sum to
the vorticity (Stokes’ theorem), a simple substraction is all that is
needed to update this missing circulation.

4.6 Handling Arbitrary Topology
Although the problem of arbitrary domain topology (e.g., when
the first Betti number is not zero) is rarely discussed in Computer
Animation, it is important nonetheless. In the absence of exter-
nal forces, the circulation along each loop (of winding number 1)
around a tunnel is constant in time. So we can precalculate a con-
stant harmonic field based on the initial circulation around each
tunnel, and simply add it to the current velocity field for advection
purposes. This is achieved in our implementation by first comput-
ing the cohomology basis (see [Desbrun et al. 2006; Tong et al.
2006]) of the fluid domain, then projecting the initial velocity field
on it to compute the harmonic part; this purely harmonic part of
the velocity field is then systematically added back to the velocity
field computed by our algorithm. This procedure serves two pur-
poses: first, we now automatically enforce the discrete equivalent
of Kelvin’s theorem on any (shrinkable or non-shrinkable) loop;
second, arbitrary topologies are accurately and efficiently handled.

If external forces f are added, the purely harmonic part of the veloc-
ity field may change. We thus need to project these external forces
onto the comology bases once again to extract the harmonic part:
this part of the forces (times dt) is then added to the purely har-
monic vector field, to be reinjected to the velocity field at each time
step as usual.

5 Results and Discussion
We have tested our method on some of the usual “obstacle courses”
in CFD. We start with the widely studied example of a flow past a
disk (see Fig. 7). If initiated with zero vorticity, it is well known
that in the case of an inviscid fluid, the flow remains irrotational for
all times. By construction, our method does respect this physical
behavior since circulation is preserved for the Euler equations. We
then increase the viscosity of the fluid incrementally, and observe
the formation of a vortex wake behind the obstacle, in agreement
with physical experiments. As evidenced by the vorticity plots,
vortices are shed from the boundary layer as a result of the ad-
herence of the fluid to the obstacle, thanks to our proper treatment
of the boundary conditions. A second test, now with a rotating

obstacle in a fluid flow at high Reynolds number (Re= 15,000),
shows good numerical agreement with high-resolution simulations
obtained in [Shiels and Leonard 2001] using millions of vortex par-
ticles.

The behavior of vortex interactions observed in existing experimen-
tal results was also compared to numerical results based on our
novel model and those obtained from the semi-Lagrangian advec-
tion method. It is known from theory that two like-signed vortices
with a finite vorticity core will merge when their distance of sepa-
ration is smaller than some critical value. This behavior is captured
by the experimental data and shown in the first series of snapshots
of Fig. 9. As the next row of snapshots indicates, the numerical
results that our model generated present striking similarities to the
experimental data. In the last row, we see that a traditional semi-
Lagrangian advection followed by re-projection misses most of the
fine structures of this phenomenon. This can be attributed to the
loss of total integral vorticity as evidenced in the graph on the side;
in comparison our technique preserves this integral exactly.
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Figure 9: Two Merging Vortices: (left) discrete fluid
simulations are compared with a real life experiment
(courtesy of Dr. Trieling, Eindhoven University; see
http://www.fluid.tue.nl/WDY/vort/index.html) where
two vortices (colored in red and green) merge slowly due to their
interaction (a); while our method faithfully captures the merging
phenomenon (b), a traditional semi-lagrangian scheme does not
capture the correct motion because of vorticity damping (even with
smaller time steps, because the more bactracking steps, the larger
the energy loss) (c). (right) the integral vorticity of both simulation
techniques are shown on a graph.

We have also considered the flow on curved surfaces in 3D with
complex topology, as depicted in Fig. 11. We were able to easily
extend our implementation of two-dimensional flows to this curved
case thanks to the intrinsic nature of our approach.

We also consider a smoke cloud surrounded by air, filling the body
of a bunny as an example of flow in a domain with complex bound-
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Figure 7: Obstacle Course 1: in the usual experiment of a flow (going left to right) passing around a disk, the viscosity as well as the velocity
can significantly affect the flow appearance; (top) our simulation results for increasing viscosity and same left-border boundary flux; the
vorticity magnitude (shown in false colors) is shown; (bottom) same frames, where color dye has been passively advected with the flow for
visualization purposes. Notice the usual irrotational flow (leftmost) for zero viscosity, and the von Karman vortex street when viscosity is
introduced.

Figure 8: Obstacle Course 2: Comparison with a very-high resolution viscous vortex particle method for the flow over an oscillating
cylinder at high Reynolds number (Re= 15,000). The top row of images are color vorticity plots from [Shiels and Leonard 2001] (used with
permission), while the bottom row shows our results at the exact same times.

ary. The buoyancy drives the air flow which, in turn, advects
the smoke cloud in the three-dimensional domain bounded by the
bunny mesh as shown in Fig. 1. Note that this domain is made
out of 7K vertices, which is the equivalent complexity (in terms of
the number of degrees of freedom) of a regular grid of size 193.
Consequently, it took less than half a second per frame to com-
pute, exemplifying the advantage of using tet meshes to resolve fine
boundaries since the equivalent low-resolution regular grid would
not nearly be able to capture the complex geometry of the bunny
mesh.

In the last simulation, we use a snow globe with a bunny inside
(see Fig. 10). We emulate a flow due to an initial spin of the globe
using a swirl described as a vorticity field. The snow particles are
(passively) transported by the flow as they fall down under the effect
of gravity. Here again, each frame is generated in less than half a
second.

Figure 11: Weather System on Planet Funky: the intrinsic nature
of the variables used in our algorithm makes it amenable to the
simulation of flows on arbitrary curved surfaces.

6 Conclusion
In this paper, we have introduced a novel theoretical approach to
fluid dynamics, along with a practical implementation and vari-

ous simulation results. We have carefully discretized the physics
of flows to respect the most fundamental geometric structures that
characterize their behavior. Among the several specific benefits that
we demonstrated, the most important is the circulation preservation
property of the integration scheme, as evidenced by our numerical
examples. The discrete quantities we used are intrinsic, allowing
us to go to curved manifolds with no additional complication. Fi-
nally, the machinery employed in our approach can be used on any
simplicial complex. However, the same methodology also applies
directly to more general spatial partitions, and in particular, to reg-
ular grids and hybrid meshes [Feldman et al. 2005]—rendering our
approach widely applicable to existing fluid simulators.

For future work, a rigorous comparison of the current method with
standard approaches should be undertaken. Using Bjerknes’ circu-
lation theorem for compressible flows may also be an interesting
avenue. Additionally, we limited ourselves to the investigation of
our scheme without focusing on the separate issue of order of ac-
curacy. Coming up with an integration scheme that is higher-order
accurate will be the object of further investigation, as it requires a
better (denser) Hodge star; in particular, it could reduce the diffu-
sion of vorticity introduced during the vorticity backtracking step.
Note also that our geometric approach bears interesting similari-
ties with the work of Chang et al. [2002], in which they propose a
purely algebraic approach to remedy the shortcomings of the tra-
ditional fractional step approach; using their numerical analysis on
our approach may provide a simple way to study the accuracy of our
scheme. Finally, mixing our method with the Lagrangian treatment
of vortex rings as in [Weißmann 2006] could allow for intuitive
control of the fluid motion.
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Figure 10: Bunny Snow Globe: the snow in the globe is advected by the inner fluid, initially stirred by a vortex to simulate a spin of the globe.
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A Discrete Exterior Derivative
A thorough explanation of the discrete exterior derivative of dis-
crete forms is out of the scope of this paper, and we refer the
reader to existing tutorials [Desbrun et al. 2006; Bochev and Hy-
man 2006]. However, the reader should be aware that this operator
is simply implemented via the use of incidence matrices. Indeed, a
key ingredient to defining the discrete version of the exterior deriva-
tive d is Stokes’ theorem:∫

σ

dα =
∫

∂σ

α,

where σ denotes a (k +1)-cell and α is a k-form. Stokes’ theorem
states that the integral of dα (a (k + 1)-form) over a (k + 1)-cell
equals the integral of the k-form α over the boundary of the (k+1)-
cell (i.e., a sum of k-cells). Stokes’ theorem can thus be used as
a way to define the d operator in terms of the boundary operator
∂ . Or, said differently, once we have the boundary operator, the
operator d follows immediately if we wish Stokes’ theorem to hold
on the simplicial complex.

To use a very simple example, consider a 0-form f , i.e., a function
giving values at vertices. With that, d f is a 1-form which can be
integrated along an edge (say with end points denoted a and b) and
Stokes’ theorem states the well known fact:∫

[a,b]
d f = f (b)− f (a).

The right hand side is simply the evaluation of the 0-form f on
the boundary of the edge, i.e., its endpoints (with appropriate signs
indicating the orientation of the edge). Actually, one can define a
hierarchy of these operators that mimic the operators given in the
continuous setting (up to an application of the Hodge star) by the
gradient (∇), curl (∇×), and divergence (∇·), namely,

• d0: maps 0-forms to 1-forms and corresponds to the Gradi-
ent;

• d1: maps 1-forms (values on edges) to 2-forms (values on
faces). The value on a given face is simply the sum (by lin-
earity of the integral) of the 1-form values on the boundary
(edges) of the face with the signs chosen according to the lo-
cal orientation. d1 corresponds to the Curl;

• d2: maps 2-forms to 3-forms and corresponds to the Diver-
gence.

Since the boundary of any mesh element can be directly read from
the incidence matrices of the mesh, the exterior derivative is trivial
to implement once the mesh is known as it depends only on its
connectivity [Elcott and Schröder 2006].

B Recovery of Velocity
We have seen in Section 4 how the vorticity ω can be derived di-
rectly from the set of all face fluxes as dT ?U = ω . However, dur-
ing the simulation, we will also need to recover flux from vorticity.
For this we employ the Helmholtz-Hodge decomposition theorem,
stating that any vector field u can be decomposed into three com-
ponents (given appropriate boundary conditions)

u = ∇×φφφ +∇ψ +h.

When represented in terms of discrete forms this reads as:

U = dΦ+?−1dT ?Ψ+H (7)
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For the case of incompressible fluids (i.e., with zero divergence),
two of the three components are sufficient to describe the velocity
field: the curl of a vector potential and a harmonic field. To see this
apply d to both sides of Eq. 7:

dU = 0 = ddΦ+d ?−1 dT ?Ψ+dH.

Since dd = 0 and d of a harmonic form always vanishes, we find
that d ?−1 dT ?Ψ = 0 to begin with. Since Ψ is a 3-form d ?−1 dT ?
Ψ = ∆Ψ = 0, i.e., Ψ is harmonic which implies in particular that
?−1dT ?Ψ = 0, proving our claim that

U = dΦ+H.

If the topology of the domain is trivial, we can furthermore ignore
the harmonic part H (we discuss a full treatment of arbitrary topol-
ogy in Section 4.6), leaving us with U = dΦ.

Since our algorithm computes an updated Ω which is related to U
as dT ?U , we need to find a solution to

Ω = dT ?dΦ,

where Ω is the known quantity, and dΦ the unknown. Unfortu-
nately the kernel of dT ? d is not empty so we can not determine
Φ directly from this equation. To pick a unique solution for Φ, we
require additionally that dT ?Φ = 0. By doing so we pick a particu-
lar solution from the kernel of dT . But if dT ?Φ = 0 then certainly
(?d ?−1 dT ?)Φ = 0 and we can add it to our equation for Ω arriving
at

Ω = (dT ?d +?d ?−1 dT ?)Φ. (8)

This latter equation is simply a Poisson equation for Φ since

?−1
Ω = ∆Φ

which has a unique solution. Let U = dΦ, and we have recovered
U as desired.

The fact that Eq. 8 is indeed a Poisson problem follows from the
definition of the Laplacian ∆ in differential calculus as ?−1dT ?
d + d ?−1 dT ?. In the language of vector calculus this translates
to ∆φφφ = (∇∇·−∇×∇×)φφφ = ∇×u. Notice that the left-side matrix
(that we will denote L) is symmetric and sparse, thus ideally suited
for fast numerical solvers. Our linear operators (and, in particular,
the discrete Laplacian) differ from another discrete Poisson setup
on simplicial complexes proposed in [Tong et al. 2003]: the ones
we use have smaller support, which results in sparser and better
conditioned linear systems [Bossavit 1998]—an attractive feature
in the context of numerical simulation.
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Abstract
We present a new algorithm for conformal mesh parameteriza-
tion. It is based on a precise notion of discrete conformal equiva-
lence for triangle meshes which mimics the notion of conformal
equivalence for smooth surfaces. The problem of finding a flat
mesh that is discretely conformally equivalent to a given mesh
can be solved efficiently by minimizing a convex energy function,
whose Hessian turns out to be the well known cot-Laplace oper-
ator. This method can also be used to map a surface mesh to a
parameter domain which is flat except for isolated cone singulari-
ties, and we show how these can be placed automatically in order
to reduce the distortion of the parameterization. We present the
salient features of the theory and elaborate the algorithms with
a number of examples.

Keywords: Discrete Differential Geometry; conformal parame-
terization; conformal equivalence; discrete Riemannian metric;
cone singularities; texture mapping

1 Introduction
In this paper we present a definition for discrete conformal equiv-
alence of triangle meshes and apply it to the problem of confor-
mal mesh parameterization. Our approach arises from two basic
premises.

First, the discrete setting should parallel the smooth setting.
There the problem of finding a conformal parameterization for a
smooth surface in space is equivalent to finding a flat metric on
the surface that is conformally equivalent to the metric induced
by the embedding. Hence, we cast the parameterization problem
as one of finding conformally equivalent flat metrics for a given
metric.

Second, we treat the parameterization problem for triangle
meshes in the spirit of Discrete Differential Geometry [Bobenko
and Suris 2005]: instead of viewing discretization as a means of
making the smooth problem amenable to numerical methods, we
seek to develop on the discrete level a geometric theory that is
as rich as the analogous theory for the smooth problem. The aim
is to discretize the whole theory, not just the equations.

Instead of asking for an approximation of the smooth problem,
we are thus guided by questions like: What corresponds to a
Riemannian metric and Gaussian curvature in an analogous the-
ory for triangle meshes? When should two triangle meshes be
considered conformally equivalent? We answer the first question
in the obvious way: the edge lengths and the angle defects at
vertices. The answer that we give to the second question is also
straightforward and intuitive. The striking point is that once we
have thus fixed the fundamental definitions of the discrete theory,
there is an efficient algorithm to solve the discrete conformal
parameterization problem.

Contributions In this paper we present the first algorithm for
mesh parameterization which is based on a definition of discrete
conformal equivalence between triangle meshes which is satisfac-
tory in the sense that (a) it depends only on the geometry of the
meshes and (b) defines an equivalence relation. Meshes in a con-
formal equivalence class are characterized by length scale factors
associated to the vertices and by conserved quantities: the length

Figure 1: Customers who visited our Tattoo parlor, where repeating
patterns can be applied seamlessly and length distortion is kept low
through cone singularities. (Insets show texture tiles.)

cross ratios. This discrete notion of conformality comes with
a comprehensive theory carrying many of the hallmarks of the
smooth setting. Most importantly for graphics applications, we
present effective computational procedures based on minimizing
a convex energy. The triangulated surfaces may be of arbitrary
topology with or without boundary and no a priori cutting is
required to deal with higher genus, for example. Flexible bound-
ary conditions support a range of options from full control over
boundary curvature to full control over length distortion, includ-
ing isometrically mapped boundaries. The theory and algorithms
also admit cone singularities, which may be placed by the user
or automatically to reduce length distortion and flatten higher
genus meshes. Last but not least, our discretely conformal param-
eterizations admit a piecewise projective interpolation scheme
for texture coordinates, which yields improved interpolation at
no additional cost.

Discrete Differential Geometry: An Applied Introduction (Desbrun, Grinspun, Schröder, Wardetzky) SIGGRAPH Asia 2008

79



2 Conformal Equivalence
Our definitions are based on a fairly direct “translation” of classic
notions to the discrete setting of meshes. In smooth differential
geometry two Riemannian metrics g and g̃ on a differentiable
2-manifold M are said to be conformally equivalent if

g̃ = e2u g (1)

for some smooth function u : M → R, which gives the logarithm
of length change between g and g̃.

In the discrete setting M becomes an abstract surface triangu-
lation consisting of vertices, edges, and triangles, M = (V, E, T ).
We do not restrict its topology or whether it possesses a bound-
ary. While the combinatorics of a mesh are encoded in such an
abstract triangulation, its intrinsic geometry is encoded in the
edge lengths. Thus we define:
Definition 2.1. A discrete metric on M is a function l on the set
of edges E, assigning to each edge ei j a positive number li j so
that the triangle inequalities are satisfied for all triangles t i jk ∈ T .

The smooth function u becomes a function on the set of vertices
and we define discrete conformal equivalence as:
Definition 2.2. Two discrete metrics l and l̃ on M are (discretely)
conformally equivalent if, for some assignment of numbers ui to
the vertices vi , the metrics are related by

l̃ i j = e(ui+u j )/2 li j . (2)

This notion of discrete conformality also appears in [Luo 2004].

It will turn out to be convenient to use the logarithmic lengths
λi j := 2 log li j , turning Eq. (2) into the linear relation

λ̃i j = λi j + ui + u j . (3)

Note that this notion of discrete conformal equivalence is indeed
an equivalence relation (i.e., it is reflexive, symmetric, and tran-
sitive) on the set of discrete metrics on M , and also on the set of
meshes. We consider two meshes as discretely conformally equiv-
alent if they have the same abstract triangulation and equivalent
edge lengths according to Eq. (2).

The primary motivation for this definition is of course the obvi-
ous analogy with the smooth setting. Another is that it behaves
correctly under Möbius transformations of space: applying a
Möbius transformation to the vertices of a mesh, the resulting
mesh is discretely conformally equivalent to the untransformed
mesh. Möbius transformations—compositions of inversions in
spheres—are the only (smooth) conformal transformations of
space. Thus, in particular, two meshes whose vertices are re-
lated by a smooth conformal transformation of space are also
discretely conformally equivalent. (To verify this claim, note
that the distance between two points is related to the distance
between their image points under a Möbius transformation f
by ‖ f (x) − f (y)‖ = ρ(x)ρ(y)‖x − y‖ for a real valued func-
tion ρ. This is obvious for translations, rotations and scaling,
and a straightforward calculation shows that it is true also for
inversions in a sphere.) As a practical consequence, this Möbius
invariance of discrete conformality enables us to map meshes not
only to the plane but also to the sphere.

Discrete conformal equivalence can also be characterized in terms
of conserved quantities, namely the length cross ratios:
Definition 2.3. Given a discrete metric l, we associate with each
interior edge ei j (between t i jk and t jim) the length cross ratio

ci j := lim/lmj · l jk/lki . (4)

Proposition. Two meshes are discretely conformally equivalent if
and only if their length cross ratios are the same.

Proof. In one direction, the implication is obvious: if the meshes
are discretely conformally equivalent, then their length cross
ratios are equal because the scale factors eu/2 cancel. To see the
converse, consider two discrete metrics l and l̃. We have to show
that if their length cross ratios c and c̃ are equal, then we can
associate numbers ui to the vertices vi satisfying Eqs. (2) (one
equation for each edge). In general, this system of equations
for the ui is overdetermined. For each triangle t i jk the three
equations corresponding to its edges already determine values
for u at its vertices:

eui = l̃ i j/li j · l̃ki/lki · l jk/l̃ jk. (5)

Considering the neighboring triangle t jim one obtains the same
value for eui precisely if ci j = c̃i j . Hence, if l and l̃ have identical
length cross ratios, values for u at the vertices are consistently
determined by Eqs. (2).

The discrete theory we have set up now informs our consequent
approach. Given a mesh M and a discrete metric l on it, we
consider the equivalence class of conformally equivalent metrics.
In this class we look for a metric l̃ which is flat. Only in a
subsequent step (Section 3.3) do we construct vertex coordinates
which realize this flat metric. To find the desired flat metric we
need the relation between length and curvature.

2.1 From Curvatures to Lengths

Given a triangle t i jk ∈ T and lengths li j , l jk, lki satisfying the
triangle inequality, the angle αi

jk at vertex vi opposite edge e jk
can be recovered by using the cosine formula or the half-angle
formula:

αi
jk = 2 tan−1

Ç

(li j+l jk−lki )(l jk+lki−li j )

(lki+li j−l jk)(l jk+lki+li j )
(6)

(and similarly for α̃ as a function of l̃). Given the angles, curva-
tures follow as the excess angle sums at vertices. The angle sum
at a vertex vi is denoted by Θi:

Θi =
∑

ti jk3vi
αi

jk

(and similarly for eΘ). The curvature at an interior vertex is
Ki = 2π−Θi and the boundary curvature at a boundary vertex
is κi = π−Θi (and similarly for eK , κ̃).

Our goal now is to find a new metric, which is conformally equiv-
alent to a given one, and which possesses prescribed curvatures.
Thus, we have to solve the following problem:

Problem. Given, for each vertex, a desired angle sum bΘi , find ui
such that the new metric l̃ has angle sums eΘi=bΘi .

For instance, if we prescribe eΘi=2π at interior vertices, i.e., eK i=0,
a solution to our problem will give a conformally equivalent flat
metric with prescribed boundary curvatures κ̃i .

The following conditions on the prescribed angle sums are
necessary for the existence of a solution. They must satisfy
0< bΘ< π · |{t i jk 3 vi}| because the triangle angles are between
0 and π, and they must be compatible with the Gauss-Bonnet
formula

∑

vi∈M\∂M Ki +
∑

vi∈∂M κi = 2πχ(M),

where χ(M) = |T | − |E|+ |V | is the Euler characteristic of M .

In view of Eqs. (2) and (6), the problem is equivalent to solv-
ing a set of n := |V | equations in n variables ui . Since the eΘi
automatically satisfy one linear relation (Gauss-Bonnet) and the
angles are scale invariant, we really have n− 1 conditions for
n− 1 essential degrees of freedom. We fix the scaling ambiguity
by requiring

∑

vi
ui = 0.
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Luckily, if a solution to this set of non-linear equations exists, it
can be found as the unique minimizer of a convex energy in u

E(u) =
∑

ti jk∈T

�

f (λ̃i j , λ̃ jk, λ̃ki)−
π

2
(ui+u j+uk)

�

+ 1
2

∑

vi∈V

bΘiui (7)

where

f (λ̃i j , λ̃ jk, λ̃ki) =

1
2

�

α̃i
jkλ̃ jk + α̃

j
kiλ̃ki + α̃

k
i jλ̃i j

�

+L(α̃i
jk) +L(α̃ j

ki) +L(α̃k
i j), (8)

with λ̃ as in Eq. (3); L(.) denoting Milnor’s Lobachevsky function
(see Appendix A); and both λ̃ and α̃ depending on u.

Indeed, the partial derivatives of this energy are

∂ui
E = 1

2

�

bΘi −
∑

ti jk3vi
α̃i

jk

�

, (9)

so that grad E(u) = 0 iff u solves the problem. The Hessian of the
energy turns out to be one half of the well-known cot-Laplace
operator:

(Hess E ·δu)i =
1
2
(∆δu)i =

1
4

∑

ei j3vi
wi j (δui −δu j), (10)

with wi j = cot α̃k
i j + cot α̃l

i j for interior edges and only one cot
term for boundary edges. (We adopt the sign convention for
the Laplace operator which renders it positive semi-definite. See
Appendix B and C for proofs of Eqs. (9) and (10).)

The Hessian is therefore positive semi-definite with only the con-
stant functions in its null-space. This corresponds to the fact that
the energy E(u) is scale invariant, i.e., its value does not change
if the same number is added to all ui .

2.2 Relation to Other Approaches

There are many algorithms for mesh parameterization in the
literature and we will not attempt a comprehensive review here
(the interested reader is referred to [Floater and Hormann 2005]
and [Sheffer et al. 2006]). Instead we focus on approaches which
are based on discretized or discrete notions of harmonicity and
conformality.

Discrete Harmonicity Discrete versions of the theory of harmonic
and analytic functions were developed as early as the 1940s and
’50s [Duffin 1956], based on simple difference equations analo-
gous to Laplace’s equation and the Cauchy-Riemann equations.
Indeed, the discovery of the cot-Laplace operator heralds from
this time [Duffin 1959], and these ideas still inform contempo-
rary notions of discrete conformality and harmonicity that are
based on linear conditions on the vertex coordinates. Examples
of theory and applications include [Pinkall and Polthier 1993;
Mercat 2001; Desbrun et al. 2002; Lévy et al. 2002; Gu and Yau
2003; Tong et al. 2007].

The linear theory of discrete harmonicity is interesting and rich,
attractive computationally, and enormously useful in applications.
But the implied notion of a discretely conformal map as a pair of
conjugate discretely harmonic functions is deficient because the
inverse of such a map, and the composition of two such maps, are
no longer discretely conformal. Thus, this notion of a discretely
conformal map does not define a notion of discrete conformal
equivalence.

Circle Patterns Going back to an unpublished idea of Thurston
(see [Stephenson 2003] for an eyewitness account), discrete
conformality can be approached through circle patterns. Here
meshes are considered together with a system of circles associ-
ated to faces [Kharevych et al. 2006] or vertices [Bowers and
Hurdal 2003; Stephenson 2005; Jin et al. 2007; Yang et al. 2008].

Two such meshes are considered conformally equivalent, if the
intersection angles of the circles—or inversive distances for non-
intersecting circles—are equal in both meshes.

These methods require the solution of non-linear equations, us-
ing a convex variational principle, a specially tailored relaxation
procedure, or a flow.

This approach to discrete conformality is also not fully satisfactory.
In the case of Kharevych et al., the intersection angles determine
the curvature of the mesh. Consequently, they must change when
the mesh is flattened. For the other circle methods, the notion
of discrete conformality either depends on an arbitrary choice
of circles, or it is defined only if the edge-lengths satisfy some
further conditions, or both.

Curvature Flow Consider u as a function of time and evolving
under the negative gradient of E

∂tu=−2 grad E = (bK − eK) .

(For simplicity, assume that M has no boundary.) We may then
think of u∗ = argminu E(u)—which we compute using Newton’s
method—as the steady state solution of this curvature flow with
given target curvatures. Using ∂t

eK = ∂u
eK · ∂tu together with

Eq. (10) we also find that the evolution of the curvature is gov-
erned by the equation

∂t
eK = e∆(bK − eK)

with e∆ denoting the (positive semi-definite) cot-Laplace operator
of the discrete metric induced by u(t).

In the case where bK = 0, this flow was considered by Luo [2004]
as a discrete version of Yamabe flow. He proves that the flow
is variational, but he gives no formula for the energy and does
not seem to be aware that the cot-Laplace operator appears in
the evolution equation for eK . A different discrete curvature flow
forms the foundation of the approach of Jin et al. [2007] who
use Chow and Luo’s definition of discrete Ricci flow [2003]. (For
2-dimensional Riemannian manifolds, Yamabe flow is the same
as Ricci flow.) Our explicitly variational formulation provides a
new approach to discrete Ricci flow for surfaces.

Angle Based Flattening Smooth conformal maps preserve an-
gles exactly. Enforcing this property as-best-as-possible in the
discrete setting forms the foundation for Angle Based Flattening
(ABF) [Sheffer et al. 2005]. The resulting optimization problem
for the angles of the flat mesh is non-linear with non-convex
non-linear constraints. It requires sophisticated numerical meth-
ods [Sheffer et al. 2005] (for some recent progress see [Zayer
et al. 2007]), and is not solved to high enough accuracy to actu-
ally produce a flat metric. Thus a further approximation step is
necessary to produce the final coordinate functions.

Metric Scaling There is one very recent approach that is closely
related to ours [Ben-Chen et al. 2008]. Just as we do, they first
compute a metric for the image mesh and only then a set of
vertex positions. They start with the following well known rela-
tion. Given a smooth 2-manifold and two metrics g, g̃—related
through the conformal factor e2u as in Eq. (1)—the curvatures K ,
eK satisfy:

e2u
eK = K +∆u, (11)

where ∆ is the—positive semi-definite—Laplace-Beltrami opera-
tor. The metric g̃ is flat (eK = 0), if u solves the Poisson equation

∆u=−K . (12)

To flatten a mesh, Ben-Chen et al. proceed by solving the dis-
cretized Poisson equation with ∆ the cot-Laplace operator in the
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original metric and Ki the angle defect at a vertex. This is pre-
cisely the first Newton step when minimizing our energy E(u).
(Their definition of length change induced by the ui is different
from Eq. (2) but this is immaterial to the present argument.) As
Ben-Chen et al. point out, this does not in general yield a flat
metric. They address this by solving a cot-Laplace layout problem
in the new metric to find flat vertex positions which approximate
the desired metric. In contrast we solve for a (numerically) flat
metric and require no further approximation to recover the actual
vertex positions.

In their method, target curvatures at the boundary as well as for
cone singularities are computed based on a diffusion problem and
its associated Green’s functions—one each per boundary vertex
and interior cone vertex. Incidentally, this computational burden
could be removed by using our natural boundary conditions and
free cone angles (Sections 4.2 and 5.1).

2.2.1 Discussion

In contrast to all other approaches, ours is based on a proper
notion of discrete conformal equivalence for triangle meshes.
This notion depends on the meshes alone without any arbitrary
choices, and it is adhered to not approximately but precisely.

We have an explicit expression for the energy—as do Kharevych
et al. but not Jin et al.—which facilitates the use of standard,
globally convergent, Newton trust region methods. We can also
accommodate cone singularities—as introduced by Kharevych
et al. and recently demonstrated for discrete harmonic ap-
proaches [Tong et al. 2007; Kälberer et al. 2007]—and do not
require a priori cutting for higher genus surfaces—as is done
in ABF. Boundary conditions include constraints on angles or
lengths and—novel among all approaches—we support isometri-
cally mapped boundaries. Incidentally, the latter also “pick out”
the unique least distorted mapping in a given equivalence class
(more on these aspects in Section 4).

Comparing our method with ABF illustrates how choosing the
“right” discrete notions can lead to concrete practical benefits.
ABF preserves triangle angles as much as possible. Our approach
preserves the discrete conformal structure of the mesh precisely.
As it happens, this leads to a mathematically simpler optimization
problem.

After this discussion of related approaches in computer graph-
ics, we want to acknowledge at least briefly some mathematical
work we have built upon. Troyanov [1986] treated the problem
of finding a conformally equivalent flat metric with prescribed
cone singularities in the smooth setting and proved existence and
uniqueness of the solution. The construction of our energy relied
heavily on previous work on variational principles for circle pat-
terns [Colin de Verdière 1991; Rivin 1994; Leibon 2002; Bobenko
and Springborn 2004]. There is a fruitful connection between
all of these circle pattern energies and our energy E(u) on the
one side and hyperbolic geometry on the other side. A reader fa-
miliar with hyperbolic geometry will realize that the appearance
of Milnor’s Lobachevsky function is a hint that our energy E(u)
has something to do with the volumes of ideal hyperbolic tetrahe-
dra, and she may recognize the logarithmic edge lengths λi j and
length cross ratios ci j as Penner coordinates and Thurston-Fock
shear coordinates for the Teichmüller spaces Tg,n of genus g Rie-
mann surfaces with n punctures. In fact, minimizing E(u) also
solves the problem of finding polyhedral realizations for com-
plete hyperbolic surfaces. But this side of the story is beyond the
scope of the present paper.

3 Discretely Conformal Parameterization
Now that the theoretical foundations are laid down we pro-
ceed with a discussion of our basic conformal parameterization

method.

3.1 Convex Optimization

So far we have a convex energy, but we do not yet have a convex
optimization problem since the domain, i.e., the set of u resulting
in new edge lengths satisfying the triangle inequalities, is not
convex. The inset figure below illustrates the legal range (yellow)
of u values for an example triangle. We get around this difficulty
by extending the domain of E(u) to all of Rn:

if l̃ jk 
 l̃ki + l̃ i j then α̃i
jk = π and α̃

j
ki = α̃

k
i j = 0.

u2

u3

u1+u2+u3=0

λ12=λ23=λ31=0

Now Eqs. (7) and (8) define E(u) for all
values of u. This simple way of extending
E(u) is C1. The gradient of the extended
energy is still given by Eq. (9), and the
Hessian is given by Eq. (10), where, how-
ever, the terms cot α̃k

i j in the equation for
the weights must be replaced by 0 when-
ever α̃k

i j = 0 or π. The figure on the right
indicates the iso-contours of the extended
energy.

We now have a standard unconstrained convex optimization prob-
lem with explicit formulæ for the target function, its gradient,
and Hessian. The Hessian is positive semi-definite with only the
constant vector in its null-space, reflecting the fact that E(u) re-
mains invariant if a constant vector is added to u. To find the
argmin of the extended energy we use the globally convergent
Newton-Steihaug trust region method [Steihaug 1983] as imple-
mented in PETSc/TAO [Balay et al. 2007; Benson et al. 2007].

3.2 Violation of the Triangle Inequality

When minimizing the extended energy it is possible that the
global minimum is achieved for a u∗ giving l̃ which violate the tri-
angle inequality. Figure 2 shows a sampling of such cases which
are representative of our experience. In all the cases we have
observed we found that the triangulation near the bad edge was
highly degenerate. In almost all cases this was due to a triangle
with one angle close to π. In others, multiple triangles were
“folded over” one another (see the second and third example in
the top row and first example in the bottom row of Figure 2).
Unless the mesh has regions full of such degenerate situations,
the problem is simply fixed by flipping or alternatively subdivid-
ing the edges opposite the straight angles. Our worst example
was the Gargoyle which required flips for 55 out of 74964 edges.
(Edge flipping was also considered by Luo [2004], albeit during
his curvature flow.)

Figure 2: A sampling of “ripped” edges. In all cases the local
geometry was near singular and edge flipping (alternatively, edge
subdivision) remedied the trouble.
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3.3 Layout

With u∗ = argminu E(u) we have new lengths l̃ and angles α̃,
but not yet a new mesh. For texture mapping we need vertex
positions which requires a layout procedure. Suppose M is a
topological disk and there are no cone singularities in the interior.
We traverse the dual graph of M in a breadth first manner, laying
out opposing vertices each time an edge is crossed. The orienta-
tion of each edge is determined by summation of corner angles
along the traversal. With this layout procedure meshes with 100s
of thousands of vertices and length ratios as high as 106 can be
handled with high precision. Typical examples start with metric
data flat to within ‖grad E(u∗)‖2 < ε= 10−14 . . . 10−12 and yield
worst relative length errors bounded by 10ε to 1000ε.

Arbitrary topology meshes and those with cone singularities are
reduced to the topological disk case. To resolve handles we com-
pute a system of loops [Erickson and Whittlesey 2005]. Cutting
the loops gives a topological disk, possibly with cones in its inte-
rior. To resolve the cones, we trace a path from each cone back to
the base vertex of the system of loops using the Dijkstra tree from
the first phase. (Any boundaries, including the one due to the
system of loops, are treated as if each were a single cone vertex
from the point of view of spanning tree construction.) Cutting
this cone spanning tree yields a topological disk with no cones
in the interior and it may be laid out as above. We have made
no efforts to move the paths to inconspicuous locations, though
methods such as Seamster [Sheffer and Hart 2002] could be em-
ployed. Note that vertices along the cut path will have multiple
positions in the layout.

3.4 Piecewise Projective Interpolation

After vertex positions for the image mesh
have been found, it is usually necessary,
e.g., in texture mapping, to extend the
map from the vertices to the whole mesh
surface through interpolation. Typically
this is done piecewise linearly. For con-
formally equivalent meshes there is an-
other possibility unique to them.

Given a domain and range triangle,
there is always a unique projective trans-
formation mapping one onto the other
and the circumcircle of one onto the cir-
cumcircle of the other. In general, these
projective mappings do not fit together
continuously across edges. A unique ex-
ception are the discretely conformally
equivalent meshes: This circumcircle
preserving piecewise projective interpolation is continuous across
edges iff the meshes are discretely conformally equivalent. This
follows from the proposition in Appendix D, which also shows
that in practice it is rather easy to take advantage of this (and we
do so in all our texture visualizations): If (x i , yi , zi) and (si , t i)
are the vertex coordinates for the original and image mesh re-
spectively, the correct projective interpolation is achieved by per-
forming linear interpolation on the homogeneous coordinates
(x i , yi , zi , 1) and e−ui (si , t i , 1). (Note the scale factor e−ui which
is applied to the homogeneous coordinates of the image mesh.)
Since conventional graphics cards support linear interpolation
between homogeneous coordinates for texturing anyway, the im-
plementation of the piecewise projective interpolation scheme
involves nothing more than using these properly scaled homo-
geneous coordinates. The figure above shows a comparison be-
tween linear interpolation (top) and projective interpolation (bot-
tom) with some notable differences highlighted.

4 Boundary Conditions
Both as a practical matter and as a key to achieving function-
ality relevant in applications, boundary conditions of different
types can be employed. We review these in turn, using practical
examples to motivate them.

4.1 Fixed Boundary Curvature

The Problem posed in Section 2.1 requires us to prescribe an-
gle sums bΘi for all vertices, i.e., target curvatures eK i at inte-
rior vertices—mostly 0 unless we want a cone singularity—and
boundary curvatures κ̃i for boundary vertices. For example, to
achieve a rectangular layout, which has obvious advantages for
texture packing, one sets eΘi = π for all boundary vertices but
four, which receive eΘi = π/2 (Figure 3, left; see also the Stamp
part in Figure 14).

Figure 3: Fixing curvatures on the boundary can be useful for
achieving a particular boundary shape. In contrast, natural bound-
aries do not constrain the boundary curvature at all (right) and
yield the least distorted mapping.

4.2 Free Boundary Curvature

Alternatively, we may prescribe angle sums bΘ at some vertices
and fix u at others. In this case the unique solution can be
found by considering the fixed ui as constants and minimizing
E(u) as a function of the remaining variables. Since the value
assigned to bΘ at vertices with fixed u is clearly irrelevant for the
minimization we may leave it undefined at these vertices. With
some ui fixed, the problem is not scale-invariant anymore and
the reduced Hessian becomes positive definite.

An extreme example is to fix u for all boundary vertices. This
gives complete control over the length distortion along the bound-
ary while leaving the boundary curvature free.

Natural Boundary Conditions One choice is to set ui = 0 for
all boundary vertices. In that case all boundary edges retain
their original length, i.e., the boundary is mapped isometrically.
Figure 3 (right) shows a mesh flattened with eΘi = 2π for all
interior vertices and ui = 0 for all boundary vertices. We call
these boundary conditions “natural” because of the following
remarkable fact from the smooth theory: Among all flat metrics
g̃ that are conformally equivalent to a given metric g, one with
least distortion is obtained by setting u = 0 on the boundary
(where the distortion is measured by the Dirichlet energy of u;
see Appendix E).

4.3 Topological Spheres

Meshes with sphere topology are sufficiently common that spe-
cific parameterization algorithms for them have been designed.
Like Kharevych et al. [2006], we exploit the Möbius invariance
of discrete conformality to map a mesh to the unit sphere. First
some vertex is sent to infinity through inversion. Removing its
vertex star we fix ui = 0 for the vertices of its link, and bΘi = 2π
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for all other vertices. The resulting planar layout is projected
stereographically to the sphere and the knocked out vertex re-
inserted at the north pole (Figure 4). Subsequent Möbius normal-
izations can be applied to ensure, for example, that the center of
mass of all vertices is at the origin [Springborn 2005]—a notion
of “equidistribution” of points. A simple calculation shows that
the resulting mesh is discretely conformally equivalent, even at
the knocked out vertex.

Figure 4: Sphere parameterizations of Dragon and Hygeia visual-
ized as spheres with the original normals.

5 Cone Singularities

In practice, a significant issue with conformal maps is their at
times severe length distortion. Gu et al. [2002], for example,
added cuts into the worst distortion area, repeating as necessary.
To avoid cutting and the associated discontinuities or complex
boundary conditions, Gu and Yau [2003] used topological punc-
turing and double cover constructions.

The most general and flexible approach to date though was intro-
duced by Kharevych et al. [2006] and is based on the selective
introduction of isolated vertices which are not required to have
zero Gaussian curvature. At these cone vertices, the local metric
is that of a Euclidean cone with some cone angle eΘi 6= 2π. This
was used both to accommodate higher genus surfaces and reduce
length distortion. Placement relied exclusively on human geomet-
ric intuition and trial and error. More recently cone singularities
with cone angles restricted to positive integer multiples of π/2
were used in rectangular surface patching [Ray et al. 2006] and
in discrete harmonic methods [Tong et al. 2007; Kälberer et al.
2007] for the construction of union-of-quad parameterizations.

Figure 5: The effect of cone singularities. Beginning with natural
boundary conditions (left), two free cones are added automatically
(middle) to reduce distortion (Section 5.1). Depending on the
texture, seams may appear. Choosing a suitable cone angle (here
π) can remove this problem (right). All three flat metrics are in the
same equivalence class as the original metric.

Aiming to align iso-parameter lines (roughly) with principal cur-
vature directions, these approaches all placed cone singularities
at numerically estimated umbilic points.

Our method supports free and fixed cone angles (Figure 5) and
we are interested in placing cone singularities in a manner which
reduces length distortion, i.e., reduces the variation of u, and to
do so automatically.

5.1 Automatic Cone Singularities

Where should the zero curvature assumption be relaxed so as to
reduce distortion? Considering Eq. (12) for the smooth setting,
we see that a local change in K leads to a localized change in
u, since adding a Dirac to the right hand side has the effect of
adding a Green’s function to the solution u. Thus, we choose
the vertex with the worst distortion, vi = argmaxvi

|ui |, as the
location for a cone singularity. (If a boundary is present we
assume natural boundary conditions, otherwise we set

∑

ui = 0.)
Instead of prescribing a cone angle, we leave it free, setting ui = 0
(Section 4.2). Since a cone singularity may be seen as the limiting
case of a very small hole, this makes sense in view of the minimal
distortion property of natural boundary conditions. Our strategy
for the placement of the cone singularities is thus very similar to
the one of Ben-Chen et al. [2008], but we do not have to do any
extra work to determine the cone angles.

A possible greedy approach starts with some minimizer u of E
and selects the vertex with the largest magnitude ui , setting it to
free cone status, and repeating. Figure 6 shows a sequence of
such greedy free placements and their impact on u.

max |u|= 1.84 max |u|= 1.16

max |u|= 0.86 max |u|= 0.67

Figure 6: Visualization of u as a graph over the domain for the
mannequin head. Using natural boundaries, zero to three greedy
free cones are placed, significantly reducing the magnitude of u in
each step.

If the mesh is a closed surface of genus 6= 1 we cannot—due to
the Gauss-Bonnet relation—get an initial solution for u without
prescribing initial curvatures at vertices. Instead of concentrating
all of the required total curvature at some vertex like Ben-Chen et
al., we distribute the required total curvature over the whole
mesh such that each vertex receives an equal share initially. This
is done for the initial solve only. As free cones are placed, the
remaining vertices revert to the desired zero curvature setting.

Because the greedy procedure cannot undo earlier decisions, it
comes as no surprise that its results can be improved (Figure 7).
Four free cone singularities were placed in a greedy manner
resulting in two cones on top of the head (front and back), at the
left ear and on the nose (left). Starting from this initial placement
of the four cones, several sweeps—three in this case—of a non-
linear Gauss-Seidel solver result in the placement on the right.
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Figure 7: Comparison of the greedy strategy (left) with concurrent
cone optimization (right) for four cones.

Cones are now placed far more symmetrically: at the top of the
head, on each ear and on the nose. Typically it takes two or three
rounds for the cone positions to “settle.” To save effort during
the Gauss-Seidel stage, we do not solve for u to high accuracy
(only one Newton step is used). The final u-function is solved
to high precision. Figure 8 shows another where this procedure
was applied with a total of 18 cones.

Figure 8: Olivier’s hand with 18 optimized free cones (distributed
over the finger tips and inbetween the fingers).

6 Texture Rectification
When mapping unstructured textures, minimizing distortion in
the parameterization is an important criterion. Using textures
with symmetries, e.g., checker boards, or when using parame-
terizations for purposes of resampling, additional constraints on
cone placement and cone angles are called for. Quadrilateral
patching in particular calls for cones with bΘi = kπ/2, 0< k 6= 4.
A simple example of this is seen in Figure 5, where two free cones
were quantized to a fixed angle of π each. Layout followed by
a suitable rigid motion and global scale places the two cones
at (0,0) and (1,0) in the parameter plane. A seamless checker
board texture results.

But quantizing the cone angles to integer multiples of π/2 is
generally not enough if there are more than two cone vertices.
Figure 9 illustrates such an example. Four cones of π each were
placed on the Venus mesh—a topological sphere. The resulting
layout—regardless of the particulars of the cone spanning tree—
must arrange the cone images as the corners of a parallogram,
but generally not as the corners of a rectangle with integer side
lengths. In the case of the Venus example a simple shear and
scale is enough to produce a seamless checker board texture.
(Afterward the metric is no longer conformally equivalent.)

Let us consider this problem in greater generality. Assume M
is a topological disk or sphere (the reason for this restriction
will be explained below) and any cones multiples of π/2. For a
topological disk, any free cones—resulting from our automatic
procedure (Section 5.1)—are rounded to the nearest positive
multiple of π/2. In the case of a closed surface, the quantized
values may violate the Gauss-Bonnet relation, for example, the
sum of quantized cone values may be too large. In that case the
cone angle that was rounded up the most has its quantized value
decreased (unless it is π/2 already). Repeating this procedure if

Figure 9: A layout for the Venus with four cones of π each. These
map to corners of a parallelogram (left side). Using a checker board
texture leads to artifacts (inset). These can be removed by rectifying
the layout with an additional transformation (right side).

necessary leads to a set of quantized values which minimize the
maximum error between orginal and quantized values while sat-
isfying the Gauss-Bonnet relation. (An analogous procedure can
be applied if the initial sum is too small.) Using these now fixed
cones the corresponding conformally equivalent metric is solved
for and laid out (Section 3.3). It defines the closed meta-polygon
P = {pi ∈ C | i = 0, . . . , m− 1} given by the vertex positions—
treated as complex numbers—of m special vertices encountered
in a single, ordered traversal of the layout boundary. Special ver-
tices are (1) cone vertices, (2) interior vertices with more than
two cut edges incident on them, and (3) boundary vertices with
a cut edge incident on them.

Figure 10 shows a meta-polygon for the Lion dataset. Five free
cones were placed with the simultaneous optimization proce-
dure, quantized to the nearest multiple of π/2 (3π/2 for all five
cones in this case), and the corresponding conformally equivalent
metric laid out.

Figure 10: Meta-polygon for the Lion with quantized cones (solid
red) before rectification. After rectification, which forces all cone
points to integer locations, the texture tiles the model seamlessly
(inset shows 3π/2 cone on chin underside).

Meta-edges correspond to paths of edges along the boundary of
the layout, joining two consecutive special vertices. Such a path is
either along the boundary of the original mesh (black edges), or
one side of a cut (colored edges), with the other side (matching
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color) corresponding to a different meta-edge. The two sides
of a cut path fit together: a Euclidean motion moves one to the
other, and the same motion aligns the corresponding meta-edges.
As Figure 10 suggests, the rotation angles of these motions are
multiples of π/2. This is true in general due to the quantized
cone angles, but only if the original mesh is simply connected—
hence the topological restriction to disks and spheres.

Suppose for a moment that the special vertices of type (1), the
cone vertices, have integer coordinates. Then a checkerboard
pattern with these vertices in the centers of the squares would fit
seamlessly on the mesh, because the Euclidean motions aligning
corresponding meta-edges would be symmetries of the pattern.

In reality, the coordinates are not integer. (Figure 11 shows an
example with eight optimized and quantized cones, which are
not on integers; note the apparent “rip” in the texture on the far
end of the right wing.) How close they are to being integer, and
hence how much distortion is needed to make them so, depends
on rotation and scaling: the larger the scale, the finer the integer
grid is relative to the layout size. Suppose such a rotated and
scaled layout is given. The idea now is to deform the meta-
polygon so that all cone vertices become complex integers, Z2 :=
Z+ IZ ∈ C, and adapt the layout accordingly. The result will no
longer be exactly discretely conformal, but only approximately
so: Seamless alignment can only be achieved by relaxing the
conformality requirement.

Figure 11: The Gargoyle—a topological sphere—with eight op-
timized and subsequently quantized cones. On the top right the
optimized cone domain and in the center the result of quantizing
the cones. Since the cones do not have integer locations the checker-
board texture has seams.

6.1 Deforming the Meta-Polygon

When deforming the meta-polygon, associated pairs of meta-
edges must maintain their alignment through Euclidean motions
with rotations being multiples of π/2. This requirement is best
treated by considering the meta-edge differences pi+1−pi =: di ∈
C (all index arithmetic is understood modulo m). Meta-edges
due to cutting come in pairs (i, j) and we have

di = Ri j d j with Ri j ∈ {+1,+I ,−1,−I}.

The perturbed edge differences d̄ must maintain these relations
and keep the polygon closed:

∑

d̄i = 0. This can be written as

Ad̄ = 0,

where A is a matrix with m columns and one more row than
there are pairs of corresponding meta-edges. Let NA be a matrix
of (column) basis vectors spanning the null space of A, chosen so
that all entries of NA are complex integers.

Now assume the vertices of the meta-polygon are numbered so
that p0 is a cone vertex and translate it to the origin. Then all
cone vertices have integer coordinates if

∑k−1
i=0 d̄i ∈ Z2 for all k

such that pk is a cone vertex. This can be written as

Bd̄ ∈ (Z2)l

where B is a matrix with m columns and l rows (one less than
there are cone vertices). Finally, the columns of BNA—all entries
are complex integers—span a complex subspace which has non-
empty intersection with the lattice (Z2)l . From this subset lattice
we wish to select the nearest (in some norm) lattice point to
the cone positions in the given (non-integer) layout. This is
an instance of the classic closest lattice vector (CLV) problem.
Optimal solutions to this problem are computationally hard. For
the examples in this paper we proceeded by computing the row
rank of BNA, fixed as many (l − 1) of the cones to the nearest
point in Z2 and solved for the remaining (l th) cone location.

Given a solution d̄ the implied deformation must now be interpo-
lated across the layout. We do this by performing a cot-Laplace
layout as explained in the next section.

6.2 Generalized Laplace Layout

In Section 3.3 we described our breadth first layout procedure to
turn metric data into coordinate functions. Another way to turn
metric data into coordinate functions is through the use of the
cot-Laplace operator.

For a flat metric the cot-Laplace operator—as a map Cn → Cn.
(n= |V |) and using natural boundary conditions [Desbrun et al.
2002; Lévy et al. 2002]—has a two dimensional (complex) null
space consisting of the constant and linear functions on the ver-
tices. The layout procedure produces the unique—up to scale and
a rigid motion—null space vector orthogonal to the constant vec-
tor. We now turn this prescription around: Given a cot-Laplace
operator due to a flat metric, produce the null space vector with
zero mean. Because of the presence of cone singularities this
cot-Laplace operator must incorporate the edge identifications
via rigid motions encoded in the meta-polygon. This is done in
the same manner as [Tong et al. 2007]. (Their method accom-
modates general rotations with no problem including the fact
that only a single complex variable is needed for each vertex.)
Cone singularities enter as Dirichlet data with positions. The
cot-Laplace operator now has only one remaining vector in its
null space: the original layout (this is true even for general cone
angles).

Figure 12: Rectified domain for Max Planck dataset and visualiza-
tion of corresponding iso-lines on the mesh.

We have run comparisons between breadth first and Laplace
layout, and found the results to be of comparable accuracy even
for very large layouts. Solving large cot-Laplace systems to high
accuracy is in general computationally far more demanding than
a simple breadth first traversal, of course.
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If the meta-polygon is deformed and we use the new cone lo-
cations as Dirichlet data the cot-Laplace operator will generally
not have a null space anymore and we return the vector of least
Dirichlet energy. Figure 12 shows the rectified domain and corre-
sponding iso-lines on the model of Max Planck; see also Figure 10
for the rectified Lion head, and Figure 13 for the rectified Torso
parameterization.

Figure 13: Visualization of the parameterization on the Torso with
14 optimized, quantized, and subsequently rectified cones (each ear,
each nostril, either side of back of neck, on Adam’s apple, three on
each arm stump and one cone on the torso bottom.

7 Numerical Results

We have applied our techniques to a number of meshes and report
a representative subset of the results here. Mesh sizes ranged
from a few hundred vertices to over 200,000 (Julius dataset in
Figure 14). In all cases we achieved gradient magnitude residuals
in the 10−14 . . . 10−12 range. None of our layouts—either breadth
first or the cot-Laplace operator for rectified layouts—have any
flipped triangles. The maximum, relative length layout error
was always bounded by 10 to 1000 times the gradient residual
norm. The Newton trust region solver typically requires around
10 iterations, each iteration having a cost proportional to the
assembly and solve phases of a single cot-Laplace problem. The
number of Newton steps is thus the relevant figure of merit in
terms of overall runtime. (Absolute performance numbers are
meaningless since individual solver implementations and pro-
cessor differences can easily account for factors of 10 and more
in observed wall clock times. With this proviso, we note that
PETSc/TAO running on a 1.1GHz Pentium M requires 162s for
Julius and 230s for the Torso.) The case of the Gargoyle is ex-
ceedingly atypical in our experience. This particular mesh is
very degenerate in many places and the trust region solver took
very small steps. As a quantitative distortion measure we used
the area weighted mean of quasi-conformality [Kharevych et al.

Figure 14: Further examples of a free boundary (Julius) and use of
boundary curvatures to enforce a rectangular domain (Stamp).

2006] (denoted ‖qc‖1 in the table), i.e., the ratio of larger to
smaller singular value of the surface to parameter plane tangent
map. A value of one indicates no angle distortion at all. While it
is difficult to compare these numbers across papers ours appear
generally somewhat worse than what was reported by Ben-Chen
et al. and Kharevych et al., for example. Given that we effectively
enforce more structure than Ben-Chen and co-workers, and do
not allow any approximation of the original data as Kharevych
and co-workers do, this is perhaps not surprising. The last column
in the table indicates the boundary conditions (free, rectangle,
sphere) or the number of optimized (o) free cones, whether they
were subsequently quantized (q), and/or rectified (r).

Model |V | Iter. ‖u‖max ‖qc‖1 cones
Face 1042 16 1.164 1.0702 rectangle
Stamp 4100 6 0.431 1.0541 free
Stamp 4100 6 0.742 1.0625 rectangle
Lion 8356 6 1.089 1.0282 5 (oqr)
Olivier 24795 6 1.188 1.0087 18 (o)
Max Planck 25445 11 0.908 1.0097 4 (oqr)
Gargoyle 24990 56 1.849 1.0509 8 (oq)
Hygeia 140654 5 0.650 1.0120 sphere
Torso 142348 12 1.957 1.0048 4 (o)
Torso 142348 21 1.091 1.0036 14 (oqr)
Dragon 152803 5 3.759 1.0277 sphere
Julius 209083 5 1.173 1.0027 free

8 Conclusion
We have shown that our simple notion of discrete conformal
equivalence leads to attractive algorithms for mesh flattening,
including the automatic determination of cone singularities to
reduce distortion and deal with higher genus surfaces, as well as
a new piecewise projective interpolation scheme. In Section 6
we have taken first steps to tackle the problem of mapping a sym-
metric pattern seamlessly onto an arbitrary surface. We have dis-
cussed a way to deal with cone singularities, but how to achieve
texture rectification for surfaces of higher genus remains an open
question. Here we see a promising new direction for further
research.
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A Milnor’s Lobachevsky Function
Milnor’s Lobachevsky function [Milnor 1982] is defined by

L(x) =−
∫ x

0
log |2sin t| dt.

Up to scale it agrees with Clausen’s integral Cl2(x) =
2L(x/2) [Lewin 1981]. The function L(x) is π-periodic, con-
tinuous, and odd. It is smooth except at integer multiples of π
where its graph has a vertical tangent. For our purposes note that

L′(x) =− log |2 sin x | and L′′(x) =− cot x .

(For us the absolute value signs are irrelevant because we only
consider L(α) for 0≤ α≤ π.) Numerical evaluation can be per-
formed very efficiently and with high accuracy [Macleod 1996].

B Gradient of E
To show Eq. (9) for the partial derivatives of the energy E, we
show first that

∂λ̃ jk
f (λ̃i j , λ̃ jk, λ̃ki) =

1
2
α̃i

jk. (13)

From Eq. (8) one obtains
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Since l̃ jk/(2sin α̃i
jk) = l̃ki/(2 sin α̃ j

ki) = l̃ i j/(2 sin α̃k
i j) = R̃ (the cir-

cumcircle radius for a triangle with sides l̃ i j , l̃ jk, and l̃ki) and
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k
i j) = 0 (the angle sum is π), Eq. (13) follows.

One finds also (in view of Eq. (3)) ∂ui
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Using this, it is straightforward to derive Eq. (9) from Eq. (7).

C Hessian of E
To show Eq. (10) for the Hessian of E, note that (Hess E ·δu)i is
the derivative of the ith component of grad E in the direction δu.
Since

(grad E)i =
1
2
bΘi −

1
2

∑

ti jk3vi
α̃i

jk,

and bΘi is constant, we are done once we have shown that the
first-order change in α̃i

jk is

δα̃i
jk =

1
2

cot α̃ j
ki(δuk −δui) +

1
2

cot α̃k
i j(δu j −δui). (14)

To derive this relation between δα̃ and δu, we start with the
sine theorem: l̃ i j/l̃ki = sin α̃k

i j/ sin α̃ j
ki . (Alternatively one could

start with the cosine theorem, compare [Ben-Chen et al. 2008],
App. A.) Take the logarithm on both sides to get

(λ̃i j − λ̃ki)/2= log sin α̃k
i j − log sin α̃ j

ki

and, for the first-order changes,

(δλ̃i j −δλ̃ki)/2= cot α̃k
i j δα̃

k
i j − cot α̃ j

ki δα̃
j
ki .

Since δλ̃i j = δui +δu j and δλ̃ki = δuk +δui , one obtains

(δu j −δuk)/2= cot α̃k
i j δα̃

k
i j − cot α̃ j

ki δα̃
j
ki ,

and two other such equations through cyclic permutation of
i jk. These three linear equations for δα̃k

i j , δα̃
i
jk, δα̃ j

ki , are lin-
early dependent (they sum to zero). Two of them together with
δα̃i

jk +δα̃
j
ki +δα̃

k
i j = 0 form a linear system of equations which

determines δα̃:
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Using the addition theorems for sine and cosine one shows
det A=−1. Applying Cramer’s rule then yields

δα̃i
jk =−det

 

1
2 (δu j−δui ) − cot α̃ j

ki 0

1
2 (δui−δuk) 0 cot α̃k

i j
0 1 1

!

which is Eq. (14).

D Circumcircle Preserving Projective Maps
Consider two triangles 4, 4̃ in the plane with respective Eu-
clidean vertex coordinates pi = (x i , yi) and p̃i = ( x̃ i , ỹi), and let
li j = ‖pi − p j‖ and l̃ i j = ‖p̃i − p̃ j‖ be the edge lengths. Define ui
by (5) so that (2) holds. In homogeneous coordinates, pi and p̃i
are represented by the vectors wi = (x i , yi , 1) and w̃ i = ( x̃ i , ỹ i , 1).
The projective transformations mapping 4 to 4̃ come from the
linear transformations f : R3→ R3 of homogeneous coordinates
with f (wi) = ai w̃ i where ai ∈ R>0.

Proposition. The projective transformation corresponding to such
a linear transformation f maps the circumcircle of4 to the circum-
circle of 4̃ if and only if a1, a2, a3 are chosen proportional to e−u1 ,
e−u2 , e−u3 .

Proof. In homogeneous coordinates w = (x , y, z), the circumcir-
cle of 4 is described by the equation q(w) = 0 where q(w) is the
quadratic form q(w) = x2 + y2 + 2cxz + 2d yz + ez2 with c, d, e
determined by the conditions q(wi) = 0. Similarly, let q̃(w̃) be
the quadratic form describing the circumcircle of 4̃. The circum-
circle of4 is mapped to the cirumcircle of 4̃ if q(w) is up to some
constant factor µ identical to q̃( f (w)), i.e. q(w) = µ· q̃( f (w)),
or equivalently, if the corresponding symmetric bilinear forms
b(w, w′), b̃(w̃, w̃′) satisfy b(w, w′) = µ· b̃( f (w), f (w′)). This is
the case iff b(wi , w j) = µ· b̃(ai w̃ i , a j w̃ j), because the wi form a
basis for R3. But since

l2
i j = q(wi −w j) = q(wi)− 2b(wi , w j) + q(w j) =−2b(wi , w j)

and similarly l̃2
i j = −2b̃(wi , w j), this is equivalent to l2

i j =
µ ai a j l̃

2
i j , and, using (2), to ai = µ−1/2 e−ui .

E Minimal Distortion
Let M be a smooth connected oriented 2-manifold with boundary,
equipped with a Riemannian metric g. If g̃ is a conformally
equivalent metric as in Eq. (1), then the Gaussian curvatures
K , eK of g and g̃ are related by Eq. (11). Thus, the metric g̃ is flat
if u is a solution of the Poisson equation (12).

Now how can one measure the distortion caused by a conformal
change of metric? If u is constant, the new metric differs from
the old one only by a global change of scale, which we do not
consider as distortion. A reasonable measure for the distortion is
therefore the Dirichlet energy of u

D(u) = 1
2

∫

M
du∧ ∗du= 1

2

∫

M
g(grad u, gradu) dA

which measures “how much u changes.”
Theorem. Among all conformally equivalent flat metrics g̃, the
ones with least distortion are obtained if u is a solution for the
Poisson equation (12) with u|∂M = const.

Note that this measure of distortion is symmetric: Interchanging
g and g̃ does not change the distortion. Note also that different
choices for the constant boundary value change the solution
g̃ only by a global scale factor, so one might as well choose
u|∂M = 0.

To prove the theorem, we proceed as usual in the calculus of
variations. Suppose g̃ is flat and consider a variation of g̃ within
the space of conformally equivalent flat metrics, i.e., a variation
u̇ of u with ∆u̇= 0. Then the variation of the Dirichlet energy is

Ḋ =
∫

M
g(grad u, grad u̇) dA=

∫

∂M
u · g(grad u̇, N) ds,

where N is the outward pointing unit normal vector field on
the boundary. As u̇ ranges over all smooth harmonic functions,
g(grad u̇, N) ranges over all smooth functions h : ∂M → R satis-
fying

∫

∂M
hds = 0. (15)

Indeed, precisely for all h satisfying (15), there is a harmonic u̇
with g(grad u̇, N) = h on ∂M : This is just the Neumann boundary
value problem for Laplace’s equation.

So g̃ is a critical point of the Dirichlet energy under variations
within the space of conformally equivalent flat metrics iff

∀h satisfying Eq. (15) :
∫

∂M
u · h ds = 0.

This is clearly the case if u|∂M is constant. To complete the
argument, suppose that u|∂M is not constant, so u(p1)> u(p2) for
some p1, p2 ∈ ∂M . Then, by continuity, there are neighborhoods
U1, U2 of p1 and p2 such that u(q1) > u(q2) for all q1 ∈ U1 and
q2 ∈ U2. Finally, consider a bump function h which is positive
only inside U1, negative only inside U2, and zero everywhere else,
and which satisfies (15) to see that u cannot be critical.
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Abstract
Discrete Laplace operators are ubiquitous in applications spanning geometric modeling to simulation. For robust-
ness and efficiency, many applications require discrete operators that retain key structural properties inherent to
the continuous setting. Building on the smooth setting, we present a set of natural properties for discrete Laplace
operators for triangular surface meshes. We prove an important theoretical limitation: discrete Laplacians can-
not satisfy all natural properties; retroactively, this explains the diversity of existing discrete Laplace operators.
Finally, we present a family of operators that includes and extends well-known and widely-used operators.

1. Introduction

Discrete Laplace operators on triangular surface meshes
span the entire spectrum of geometry processing appli-
cations, including mesh filtering, parameterization, pose
transfer, segmentation, reconstruction, re-meshing, com-
pression, simulation, and interpolation via barycentric coor-
dinates [Tau00,Zha04,FH05,Sor05].

In applications one often requires certain structural prop-
erties of discrete Laplacians—such as symmetry, sparsity,
linear precision, positivity, and convergence—requirements
that are motivated by an attempt to keep properties of the
continuous case, leading to a large and diverse pool of dis-
crete versions. What is missing is a characterization of this
vast pool by means of a unified conceptual treatment.

As a step toward such a unified treatment, we describe a
set of natural properties for discrete Laplace operators on tri-
angular surface meshes (§2). Building on a century-old theo-
rem by Maxwell and Cremona [Max64,Cre90], we prove an
important theoretical limitation: not all the natural proper-
ties can be satisfied simultaneously, i.e., a ‘perfect’ discrete
Laplacian does not exist (§3). This result imposes a taxon-
omy on all discrete Laplacians, by considering those proper-
ties that they fail to respect. Retroactively, this explains the
diversity of existing Laplacians proposed in the literature,
as different applications are bound to choose different op-
erators. We complement this analysis with a framework for
constructing sparse symmetric discrete Laplacians (§4).

1.1. Properties of smooth Laplacians

Consider a smooth surface S, possibly with boundary,
equipped with a Riemannian metric, i.e., an intrinsic no-
tion of distance. Let the intrinsic L2 inner product of func-
tions u and v on S be denoted by (u,v)L2 = S uv dA, and let
Δ=−divgrad denote the intrinsic smooth Laplace-Beltrami
operator [Ros97]. We list salient properties of this operator:

(NULL) Δu = 0 whenever u is constant.

(SYM) Symmetry: (Δu,v)L2 = (u,Δv)L2 whenever u and v
are sufficiently smooth and vanish along the boundary of S.

(LOC) Local support: for any pair p �= q of points, Δu(p) is
independent of u(q). Altering the function value at a distant
point will not affect the action of the Laplacian locally.

(LIN) Linear precision: Δu = 0 whenever S is part of the
Euclidean plane, and u = ax+by+ c is a linear function on
the plane.

(MAX) Maximum principle: harmonic functions (those for
which Δu = 0 in the interior of S) have no local maxima (or
minima) at interior points.

(PSD) Positive semi-definiteness: the Dirichlet energy,
ED(u) = S ‖gradu‖2 dA, is non-negative. By our choice of
sign for Δ, we obtain ED(u) = (Δu,u)L2 ≥ 0 whenever u is
sufficiently smooth and vanishes along the boundary of S.

In applications, one often requires a discrete Laplacian
having properties corresponding to (some subset of) the
properties listed above.

© The Eurographics Association 2007.
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2. Discrete Laplacians

Discrete Laplacians defined Consider a triangular surface
mesh Γ, with vertex set V , edge set E, and face set F . We
define a discrete Laplace operator on Γ by its linear action
on vertex-based functions,

(Lu)i =∑
j
ωi j(ui −u j) , (1)

where i and j refer to vertex labels. Note that (1) automat-
ically implies that L satisfies (NULL). Vice-versa, any lin-
ear operator on function values at vertices, (Lu)i = ∑ j li ju j,
which vanishes on constants, satisfies 0 = ∑ j li j, and can
hence be written as in (1) by setting ωi j = −li j. The proper-
ties of L are encoded by the coefficient matrix, (ωi j).

Desired properties for discrete Laplacians We describe a
set of natural properties for discrete Laplacians. Each prop-
erty is primarily motivated by a core structural property of
the smooth Laplacian, but where possible we attempt to pro-
vide additional geometric and physical intuition.

SYMMETRY (SYM): ωi j = ω ji. Motivation: Real sym-
metric matrices exhibit real eigenvalues and orthogonal
eigenvectors.

LOCALITY (LOC): Weights are associated to mesh edges
(1-ring support), so that ωi j = 0 if i and j do not share an
edge in Γ. Changing the function value u j will not alter the
Laplacian’s action (Lu)i, if i and j do not share an edge. Mo-
tivation: Smooth Laplacians govern diffusion processes via
ut = −Δu. When discretized via random walks on graphs,
(ωi j) are transition probabilities along edges of Γ.

LINEAR PRECISION (LIN): (Lu)i = 0 at each interior ver-
tex whenever Γ is straight-line embedded into the plane and
u is a linear function on the plane, point-sampled at the ver-
tices of Γ. This is equivalent to requiring that

0 = (Lx)i =∑
j
ωi j(xi −x j) (2)

for all interior vertex labels i, where x ∈ R
2|V | denotes the

vector of positions of the |V | vertices of Γ in the plane†.
Motivation: In graphics applications, (2) is desirable for
(i) de-noising, where one expects to remove normal noise
only but not to introduce tangential vertex drift [DMSB99],
(ii) parameterization, where one expects planar regions to
remain invariant under parameterization [FH05], and (iii)
plate bending energies, which must vanish for flat config-
urations [WBH∗07].

POSITIVE WEIGHTS (POS): ωi j ≥ 0 whenever i �= j. Ad-
ditionally we require that for each vertex i there exists at

† The equivalence follows from observing that (2) implies that L
vanishes on two linear functions, the x− and y−coordinates. Since
L vanishes on constants by definition, it follows that it vanishes on
all linear functions.

least one vertex j such that ωi j > 0. Motivation: (i) (POS)
is a sufficient condition for a discrete maximum principle
(recall (MAX) from the smooth case). (ii) Physically, in dif-
fusion problems corresponding to ut = −Δu, (POS) assures
that flow travels from regions of higher to regions of lower
potential, not vice-versa. (iii) (POS) establishes a connection
to barycentric coordinates by setting

λi j =
ωi j

∑ j �=iωi j
so that ∑

j �=i

λi j = 1 .

Indeed, u is discrete harmonic ((Lu)i = 0 at all inte-
rior vertices) if and only if ui is a convex combination
of its neighbors (ui = ∑ j �=i λi ju j). (iv) The combination
(LOC)+(LIN)+(POS) is related to Tutte’s embedding theo-
rem for planar graphs [Tut63,GGT06]: positive weights as-
sociated to edges yield a straight-line embedding of an ab-
stract planar graph. For fixed boundary vertices, this embed-
ding is unique, and it satisfies (LIN) by construction.

POSITIVE SEMI-DEFINITENESS (PSD): L is symmetric
positive semi-definite with respect to the standard inner
product and has a one-dimensional kernel. Motivation: The
non-negative discrete Dirichlet energy is given by ED(u) =

∑i, jωi j(ui −u j)
2. Note that (SYM) and (POS) imply (PSD),

but (PSD) does not imply (POS).

CONVERGENCE (CON): Ln → Δ, in the sense that solu-
tions to the discrete Dirichlet problem, involving Ln, con-
verge to the solution of the smooth Dirichlet problem, in-
volving Δ, under appropriate refinement conditions and in
appropriate norms [HPW06]. Motivation: (CON) is indis-
pensable when seeking to approximate solutions to PDEs.

Examples We briefly survey several Laplacians used
in computer graphics. Purely combinatorial Lapla-
cians [Zha04], such as the umbrella operator (ωi j = 1
iff vertex i and j share edge) and the Tutte Laplacian,
(ωi j = 1/di, where di denotes the valence of vertex i) fail
to be geometric, i.e., they violate (LIN). Floater’s mean
value weights and the Wachspress coordinates are widely
used for mesh parameterization [FH05], but violate (SYM)
and (CON). The ubiquitous cotan weights [PP93] and their
variants, commonly used for mesh de-noising, violate (POS)
on general meshes.

To resolve cotan’s violation of (POS), [BS05] uses the in-
trinsic Delaunay triangulation of the polyhedral surface, at
the cost of violating (LOC). One could alter the definition of
(LOC) so that it refers to the intrinsic Delaunay triangulation
instead of the input mesh, Γ (in general these two triangu-
lations have differing edges). Even so, an extended notion
of locality would be violated: there is no universal (input-
independent) integer k, such that the Delaunay edges inci-
dent to i can be computed from the knowledge only of a
k-neighborhood of i in Γ. We refer to §3.3 for further dis-
cussion, and summarize the situation:
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Figure 1: Left: Primal graph (solid lines) and orthogonal dual (dashed lines), with edge ei j and its dual highlighted. The dark shaded region
defines the dual cell, �i. Middle: Mean value weights correspond to dual edges tangent to the unit circle around the center vertex. Right: The
projection of the Schönhardt polytope is not regular, so it does not allow for a discrete Laplacian satisfying (SYM)+(LOC)+(LIN)+(POS).

SYM LOC LIN POS PSD CON

MEAN VALUE ◦ • • • ◦ ◦
INTRINSIC DEL • ◦ • • • ?

COMBINATORIAL • • ◦ • • ◦
COTAN • • • ◦ • •

Observe that none of the Laplacians considered in graph-
ics fulfill all desired properties. Even more: none of them
satisfy the first four properties. This is not a coincidence:

3. No free lunch

Main result Not all meshes admit Laplacians satisfying
properties (SYM), (LOC), (LIN), and (POS) simultaneously.

We prove our main result by interpreting a theorem known
to Maxwell and Cremona [Max64,Cre90]. Our contribution
is to relate their classical result to the study of discrete Lapla-
cians (and barycentric coordinates) in graphics. While the
technical tools used here are not new, we use them in de-
veloping the central obstruction to the existence of ‘perfect’
discrete Laplacians.

As a first step of deriving this obstruction (§3.1),
we establish a correspondence between properties
(SYM)+(LOC)+(LIN) and orthogonal (reciprocal)
dual graphs, based on the Maxwell-Cremona theorem.
In a second step (§3.2), we show that orthogonal duals
which additionally satisfy (POS) correspond to regular
triangulations. Since not every mesh is regular, it follows
that general meshes do not admit Laplacians that satisfy
(SYM)+(LOC)+(LIN)+(POS).

3.1. Geometric Laplacians and orthogonal dual graphs

Maxwell-Cremona view One may view the weights, ωi j,
as stresses on a planar framework (with ωi j > 0 correspond-
ing to pulling stresses and ωi j < 0 for pushing stresses).
Then (2) is the Euler-Lagrange equation of the equilibrium
state of the framework when all boundary vertices are held
fixed. The Maxwell-Cremona theorem states that the frame-
work is in equilibrium if and only if there exists a orthogonal
(reciprocal) dual framework.

Orthogonal duals Consider a planar graph, Γ, embedded
into the plane with straight edges that do not cross. An
orthogonal dual is a realization of the dual graph, Γ∗ =
(V∗,E∗,F∗) = (F,E,V ), in the plane, with straight edges
orthogonal to primal edges (viewed as vectors in the plane)‡,
see Figure 1-left.

To relate orthogonal duals to our properties, first consider
a Laplacian on Γ that satisfies (SYM)+(LOC)+(LIN). For
each primal edge ei j of Γ, viewed as a vector in the plane,
we can define a corresponding dual edge by

�ei j = R90(ωi jei j) ,

where R90 denotes rotation by 90 degrees in the plane. In
general, dual edges do not necessarily form closed cycles
when moving around an interior primal vertex, i.e., in gen-
eral, ∑ j �ei j �= 0. However, in our case, it is straightforward
to check that (2) provides exactly the requisite cycle con-
dition. Therefore, we obtain a realization of the dual graph
in the plane whose edges are orthogonal to primal edges
(viewed as vectors in the plane). Observe that the (straight)
edges of Γ∗ are allowed to cross because we allow for nega-
tive (primal) weights.

Vice versa, consider a pair (Γ,Γ∗) of a primal graph and
a corresponding orthogonal dual, both embedded into the
plane with straight edges. We obtain weights per primal edge
via

ωi j :=
|� ei j|
|ei j| . (3)

Here, |ei j| denotes the usual Euclidean length, and | � ei j|
denotes the signed Euclidean length of the dual edge. The
sign is obtained as follows. The dual edge, �ei j, connects
two dual vertices � f1 and � f2, corresponding to the primal
faces f1 and f2. The sign of | � ei j| is positive if along the
direction of the ray from � f1 through � f2, the primal face f1

‡ Our definition of orthogonal duals is different from the one
of [Aur87] who considers what we call positive orthogonal duals
here.
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lies before f2. The sign is negative otherwise. With this sign
convention, one readily checks that (3) implies (2). We there-
fore obtain a Laplacian satisfying (SYM)+(LOC)+(LIN).

Examples Discrete Laplacians derived from orthogonal du-
als on arbitrary (including non-planar) triangular surfaces
were recently introduced in [Gli05], however, without not-
ing the equivalence to (SYM)+(LOC)+(LIN) in the planar
case. A prominent example of orthogonal duals are the cotan
weights [PP93], which (as noted in [DHLM05]) arise from
assigning dual vertices to circumcenters of primal triangles.

If we drop (SYM) from the previous discussion, we still
obtain an orthogonal dual face per primal vertex, although
these dual faces no longer fit into a consistent dual graph.
When the dual edges all have positive length, we obtain
an operator satisfying (LOC)+(LIN)+(POS) but not (SYM).
[FHK06] explored a subspace of this case: a one-parameter
family of linear precision barycentric coordinates, includ-
ing mean value and Wachspress coordinates (see Figure 1-
middle). [LBS06] showed that each member of this family
corresponds to a specific choice of orthogonal dual face per
primal vertex.

3.2. Positive Laplacians and regular triangulations

We now show the central obstruction: A triangulation
of the plane allows for discrete Laplacians which satisfy
(SYM)+(LOC)+(LIN)+(POS) if and only if the triangula-
tion is regular.

While there are various equivalent definitions of regu-
larity [Ede01], the above obstruction immediately follows
when combining the previous discussion with an observa-
tion of Aurenhammer [Aur87]: a straight-line triangulation
of the plane is regular if and only if it allows for a positive
orthogonal dual, i.e., a dual with positive weights, ωi j. Un-
fortunately, an arbitrary input mesh, Γ, is not guaranteed to
be regular, see Figure 1-right. This completes the proof of
our main result: there are no ’perfect’ discrete Laplacians
for general meshes.

3.3. Discussion

Extended notion of locality To encompass additional pos-
sibilities for discrete operators, one could consider extend-
ing (LOC) from 1-rings to k-rings for some fixed k > 1, i.e.,
where ωi j is allowed to be non-zero if i and j are no more
than k edges apart. Such an extension would accommodate,
e.g., methods using higher-order basis functions. The Lapla-
cians provided in [Xu04], based on Loop subdivision bases,
use k = 2, but they break (SYM) and (POS). We conjecture,
but do not prove, that extending (LOC) to k > 1 does not
remove the fundamental obstruction to a perfect Laplacian.

Regularity-restoring approaches Motivated by [BS05],
one could attempt to circumvent the central obstruction to
perfect Laplacians by considering an algorithm that first

modifies the input (Γ) mesh combinatorics to ensure regular-
ity. One might then modify the definition of (LOC) to refer to
the intrinsic triangulation rather than Γ. We discuss this pos-
sibility and conjecture that this route violates another notion
of locality of the Laplacian, which we call (LOC2): the exis-
tence of a universal (mesh-independent) integer k such that
the weights ωi j can be computed from the k-neighborhood
of i in the original triangulation Γ.

As in the planar picture, one can turn any (non-flat) tri-
angular mesh into a regular one without changing its in-
trinsic structure by intrinsic edge flips [Gli05, FSBS]. Af-
ter regularity has been restored via intrinsic edge flips,
one could redefine (LOC) with respect to the intrinsic tri-
angulation, rather than Γ, to obtain Laplacians satisfying
(SYM)+(LOC)+(LIN)+(POS). Unfortunately, for the spe-
cific case of an intrinsic Delaunay re-triangulation of Γ, we
observed in §2 that (LOC2) would still be violated.

We conjecture that any approach that intrinsically re-
stores regularity must violate (LOC2). Our belief stems from
the link between regularity and weighted Delaunay trian-
gulation [Ede01]: given a weighted Delaunay triangulation,
when a vertex (arbitrarily far away from a given vertex i)
is moved, the restoration of the weighted-Delaunay invari-
ants can require re-tessellation or re-assignment of weights
locally around i.

3.4. Taxonomy of the literature

In hindsight, our result explains the diversity of discrete
Laplacians considered in graphics, each application choos-
ing the subset of properties closest tailored to their needs:
dropping (LOC) yields intrinsic (weighted) Delaunay (or
meshless) Laplacians, dropping (SYM) gives rise to barycen-
tric coordinates, dropping (LIN) yields combinatorial Lapla-
cians, and dropping (POS) gives rise to cotan weights and
their generalization (3).

4. General construction for discrete Laplacians

In this final section, we offer a framework for construct-
ing discrete Laplacians using adjoint operators and L2 inner
products. We show that (SYM) and (LOC) arise from choos-
ing diagonal inner products, (LOC2) holds if inner products
depend only on local k-neighborhoods of Γ, (POS) corre-
sponds to inner products with positive entries, (PSD) arises
from positive semi-definite inner products, and (LIN) corre-
sponds to a geometric choice.

Construction It is known from the continuous setting that
the Laplacian on functions can be written as Δ= δdu, where
d denotes the usual metric-free derivative taking 0-forms
(functions) to 1-forms, and δ is the adjoint operator, taking
1-forms to 0-forms. Using L2 inner products, δ is defined by
the identity (du,α)L2

1
= (u,δα)L2

0
, where u is a function and

α is a 1-form. Notice that d is defined independent of any
metric, whereas δ cannot be defined without a metric. For

© The Eurographics Association 2007.

Discrete Differential Geometry: An Applied Introduction (Desbrun, Grinspun, Schröder, Wardetzky) SIGGRAPH Asia 2008

93



Wardetzky, Mathur, Kälberer, and Grinspun / Discrete Laplace operators: No free lunch

the Laplacian we obtain

(Δu,v)L2
0
= (δdu,v)L2

0
= (du,dv)L2

1
. (4)

In the discrete case, we identify 0-forms with values at
vertices, and 1-forms with values at edges. The metric-
independent derivative, d, taking 0-forms to 1-forms is

(du)(ei j) = u j −ui .

It remains to define the adjoint operator, δ. As before, its def-
inition is metric-dependent. Denoting edge lengths by |e|, we
obtain L2 inner products for 0-forms and 1-forms by sum-
ming over all vertex pairs ( j, j′), respectively all edge pairs
(e,e′):

(u,v)L2
0
= ∑

j, j′
mj j′u jv j′ and (α,β)L2

1
= ∑

e,e′
lee′

α(e)
|e|

β(e′)
|e′| .

Notice that the square matrix (mj j′) is vertex-based, while
the square matrix (lee′) is edge-based. In the specific case
of diagonal matrices, we can treat (lee′) as vertex-based by
setting li j := lei jei j . From (4) we obtain

(Lu)i := (Δu,1i)L2
0
= mii(Δu)i =∑

j

li j
|ei j|2

(

ui −u j
)

, (5)

where 1i is the discrete Dirac delta function, which has unit
value at vertex i and vanishes on all others. Observe that by
appropriate choice of inner products, li j, we recover all dis-
crete Laplacians (1) which satisfy (LOC) and (SYM).

Properties Observe that (LOC) and (SYM) are satisfied au-
tomatically in (5), (LOC2) holds if li j can be computed from
local mesh information, (POS) is equivalent to li j ≥ 0, and
(PSD) is equivalent to (du,du)L2

1
≥ 0 with equality only if

u is constant. Finally, (LIN) corresponds to geometric inner
products. To see this, recall from §3.1 that (LIN) corresponds
to orthogonal duals. The geometric view is obtained by set-
ting mii = | � i| (area of the dual cell), and li j = | � ei j||ei j|
(where | � ei j| is signed length), exactly reproducing the
weights of (3).

As a concluding remark we note that our inner product
view generalizes the approach of [DHLM05], which con-
structs δ and Δ from a discrete Hodge star, based on cir-
cumcentric duals. Indeed, while it is straightforward to gen-
eralize the Hodge star framework of [DHLM05] from cir-
cumcentric to arbitrary orthogonal duals, it is not obvious
whether this approach generalizes to Laplacians not arising
from a dual mesh. In contrast, our inner product view is en-
tirely primal-based, with the use of a dual mesh restricted to
a special (geometric) case.
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Chapter 12:
Discrete Geometric Mechanics for Variational Time Integrators
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Abstract

In this chapter, we present a geometric—instead of a traditional
numerical-analytic—approach to the problem of time integration.
Geometry at its most abstract is the study of symmetries and their
associated invariants. Variational approaches based on such notions
are commonly used in geometric modeling and discrete differen-
tial geometry. Here we will treat mechanics in a similar way. In-
deed, the very essence of a mechanical system is characterized by
its symmetries and invariants. Thus preserving these symmetries
and invariants (e.g., certain momenta) into the discrete computa-
tional setting is of paramount importance if one wants discrete time
integration to properly capture the underlying continuous motion.
Motivated by the well-known variational and geometric nature of
most dynamical systems, we review the use of discrete variational
principles as a way to derive robust, and accurate time integrators.

1 Introduction

Prediction is difficult, especially of the future.

—Mark Twain

Time Evolution of Dynamical Systems Time evolving phe-
nomena such as the swinging of a clock pendulum, the bouncing of
a soft ball on the floor, or even biological systems and stock market
indicators are often modeled (i.e., studied and understood) as dy-
namical systems. Mathematical models of the evolution in time of
these systems generally involve systems of differential equations.
Solving a physical system means figuring out how to move the sys-
tem forward in time from a set of initial conditions, allowing the
computation of, for instance, the trajectory of the soft ball (i.e., its
position as a function of time) thrown onto the floor. Although
this example can easily be solved analytically, direct solutions of
the differential equations governing a system are generally hard or
impossible—we need to resort to numerical techniques to find a
discrete temporal description of a motion. Consequently, there has
been a significant amount of research in applied mathematics on
how to deal with some of the most useful systems of equations,
leading to a plethora of numerical schemes with various proper-
ties, orders of accuracy, and levels of complexity of implementation
(see [Press et al. 1992] for a general overview).

Accurate vs. Qualitative Integrators While it is unavoidable
to make approximations in numerical algorithms (i.e., to differ from
the continuous equivalent), the matter becomes whether the numer-
ics can provide satisfactory results. The notion of satisfactory is,
however, objective-dependent. If simulation is used for the design
of a plane wing through a series of tests over a wide range of situa-
tions, qualitative reproduction of the wing behavior may be prefer-
able over absolute numerical accuracy. If, however, simulation is
used to find the proper launch parameters for a satellite to be put
at a particular orbit, accurate results are crucial. This apparent mis-

match in objectives has been, historically, aggravated by the cultural
gap existing between applied and theoretical communities. We will
show that in fact, one does not have to ask for either predictability
or accuracy: simple methods exist that guarantee good statistical
predictability by respecting the geometric properties of the exact
flow of the differential equations, while being also easily rendered
arbitrarily accurate.

Animation, or Simulation? In Computer Animation, time in-
tegrators are crucial computational tools at the core of most physics-
based animation techniques. Animating a rigid body for instance
uses the principles of classical mechanics, involving second or-
der differential equations. In their most rudimentary form, these
principles express the relationship between forces acting on the
body and its acceleration given by Newton’s laws of motion. From
these equations of motion, classical time integrators (such as fourth-
order Runge-Kutta, implicit Euler, and more recently the Newmark
scheme) have been methods of choice in practice [Parent 2001;
Hauth et al. 2003] to result in motions with good visual behavior—
arguably, the top priority in graphics. Nonetheless, allowing the
equations of motion to be slightly violated is commonly used to
better control the resulting animation [Barzel et al. 1996], as long
as it still looks visually plausible. In other words, local accuracy
can be tinkered with just as long as the motion is still “globally”
right.

Goals In this chapter, we provide an introduction to geometric
mechanics, first from a continuous, then from a discrete point of
view. Departing sharply from traditional numerical-analytic expo-
sitions, we point out how respecting the geometry of mechanics is
not only natural, but it provides simple and powerful foundations
for the design of robust time integrators. In particular, we will in-
troduce the notion of variational integrators as a class of solvers
specifically designed to preserve this underlying physical structure,
even for large time steps that would produce overdamped or diverg-
ing results with more traditional methods.

2 Geometric Approach to Mechanics

Dynamics as a Variational Problem Considering mechan-
ics from a variational point of view goes back to Euler, Lagrange
and Hamilton. The form of the variational principle most important
for continuous mechanics is due to Hamilton, and is often called
Hamilton’s principle or the least action principle: it states that a
dynamical system always finds an optimal course from one posi-
tion to another—or, as P.L. Moreau de Maupertuis put it, “Nature
is thrifty in all its actions”. A more formal definition will be pre-
sented in Section 4.1, but one consequence is that we can recast the
traditional way of thinking about an object accelerating in response
to applied forces into a geometric viewpoint. There, the path fol-
lowed by the object has optimal geometric properties—analog to
the notion of geodesics on curved surfaces. This point of view is
equivalent to Newton’s laws in the context of classical mechanics,
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but is broad enough to encompass areas ranging to E&M and quan-
tum mechanics.

Discrete Structure-Preserving Integrators Geometric in-
tegrators are a class of numerical time-stepping methods that ex-
ploit this geometric structure of mechanical systems [Hairer et al.
2002]. Of particular interest within this class, variational integra-
tors [Marsden and West 2001] discretize the variational formulation
of mechanics we mentioned above, providing a solution for most
ordinary and partial differential equations that arise in mechanics.
While the idea of discretizing variational formulations of mechan-
ics is standard for elliptic problems using Galerkin Finite Element
methods for instance, only recently has it been used to derive vari-
ational time-stepping algorithms for mechanical systems. This ap-
proach allows the construction of integrators with any order of ac-
curacy [West 2003; Lew 2003], and can handle constraints as well
as external forcing. Results have been shown to be equal or supe-
rior to all other types of integrators for simulations of a large range
of physical phenomena [Kane et al. 2000], making this discrete-
geometric framework both versatile and powerful.

Of particular interest in computer animation, the simplest varia-
tional integrator can be implemented by taking two consecutive po-
sitions q0 = q(t0) and q1 = q(t0+dt) of the system to compute the
next position q2 = q(t0 + 2dt). Repeating this process calculates
an entire discrete (in time) trajectory. In this chapter, we describe
the foundations necessary to derive such variational schemes based
on geometric arguments.

3 A Motivating Example: The Pendulum

Before we delve into the details of what variational integrators are,
let us first look at a simple example to exemplify how slight varia-
tions in the design of time integrators can result in widely different
behaviors.

3.1 Setup and Conventions

Consider a simple pendulum of mass m and length L, swinging
under the influence of the gravitational acceleration g. Let q(t)
represents the pendulum’s angle with the vertical at time t. As this
angle is the only degree of freedom for this simple example, we can
express the equations of motion for this system based solely on q
and its derivatives:

q̈ = − g
L

sin q, (1)

where we use the “dot” notation to represent derivatives with re-
spect to time, i.e.:

q̇ :=
dq

dt
, and q̈ :=

d2q

dt2
.

We can rewrite this equation as a system of two coupled first-order
equations in the variables q and v:

q̇ = v (2)

v̇ = − g
L

sin q (3)

If the initial conditions q(0) and q̇(0) are given, then we could theo-
retically solve this differential equation for q. Assume for a moment
that we don’t have access to the analytical solution to this problem
(in fact, as in many cases, no such solution is known). We can only
hope to approximate the solution using an integrator. To achieve
this goal, we first discretize the problem. That is, we break up time

intoN equal steps of length h, so that we no longer have a continu-
ous notion of time, but have instead a discrete set of times tk = kh.
Then, finding an approximation to the differential equation on our
new discrete time domain is tantamount to solving for the values of
the angles at the various times, i.e., finding the values qk = q(tk)
for k = 1, . . . , N .

Given this setup, how can we compute the qk’s? There are actu-
ally many choices, and the important point to realize is, not all of
them perform equally well.

3.2 Three Numerical Schemes

Assuming that the time step h is small enough with respect to all
other derivatives of q, we could leverage the well-known Taylor
expansion:

q(t+ h) = q(t) + hq̇(t) +O(h) .

Using this first order approximation, one can easily derive the fol-
lowing, straightforward update rules by applying Taylor expansion
to both q and v: {

qk+1 = qk + h vk

vk+1 = vk − h
g

L
sin qk

Given the previous values qk, vk, this method gives us an explicit
formula to compute the next values in time qk+1, vk+1; this specific
time integrator is called the explicit Euler method. Repeating this
procedure by setting k := k + 1 provides a way to compute the
whole motion.

Alternatively, we could change the time integration procedure by
evaluating the right hand sides of the former rules at the next time
step, through: {

qk+1 = qk + h vk+1

vk+1 = vk − h
g

L
sin qk+1

This method is no longer explicit, but implicit: one needs to use
a (non-linear) solver to find the pair qk+1, vk+1 that satisfy these
equations, given the current values qk and vk. This time integrator
is traditionally called the implicit Euler method.

Finally, one could use a seemingly strange mix of the two, by
first updating vk+1 explicitly, then qk+1 using the new value vk+1

(thus, still explicitly):{
vk+1 = vk − h

g

L
sin qk

qk+1 = qk + h vk+1

Notice that the difference with the first scheme is rather minimal.
However, this particular time integrator is known as the symplectic
Euler method.

These three methods are called finite difference methods, since
they approximate the left-hand side derivatives of Eqs. (2-3) by tak-
ing the difference between consecutive values. Notice in particular
that, while the implicit method is more computationally expensive,
the two others involve the exact same amount of operations. Thus,
their behavior should not be very different, right?

3.3 Comparing Integrators

Numerical tests of these three integrators reveal obvious differences
in practice (to avoid going too much into sordid details of numer-
ical analysis, we will stick to a fixed time step h = 0.01 for all
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Figure 1: Three integrators in phase space (q, p): (left) explicit, (middle) implicit, (right) symplectic. Six initial conditions are shown, with their respective
trajectories; only the symplectic integrator captures the periodic nature of the pendulum. The bold trajectories correspond to the exact same initial condition.

experiments). First, one quickly realizes that the explicit Euler suf-
fers from stability problems: the motion of the pendulum amplifies
over time! An obvious consequence is that the pendulum’s energy
increases over time, rather than being conserved. Thus, in prac-
tice, the solution often “blows up” and becomes unstable as time
progresses—not a great quality for a time integrator. Fortunately,
the implicit Euler is stable: the amplitude of the pendulum’s os-
cillations actually decreases over time, avoiding any chance of nu-
merical divergence (see Fig. 2). However, this stability comes at
a cost: the pendulum loses energy, causing the pendulum to slow
down towards a stop, even if our original equations do not include
any damping forces. Effectively, we resolved the stability issue
through the introduction of numerical dissipation—but we induced
the opposite problem instead. The symplectic method, on the other
hand, both is stable and oscillates with constant amplitudes. This
is obviously a superior method for physical simulation, given that
no additional numerical operations were needed to get the correct
qualitative behavior!

Figure 2: The pendulum: for the equation of motion of a pendulum of length
L and unit mass in a gravitation field g (left), our three integrators behave
very differently: while the explicit Euler integrator exhibits amplifying oscil-
lations, the implicit one dampens the motion, while the symplectic integrator
perfectly captures the periodic nature of the pendulum.

Now, if we are only solving for the position of the pendulum
only at one particular time, it does not really matter which method
we use: taking small enough time steps will guarantee arbitrarily
good accuracy. However, if we wish our time integrator to be glob-
ally predictive, the least we can ask for is to get a pendulum that
actually keeps on swinging. Even a simple animation of a grandfa-
ther clock or a child on a swing would look unrealistic if it seemed
to gain or lose amplitude inexplicably. In other words, the behavior
of energy over time is of key importance. But how do we know that
an integrator will have these good properties ahead of time? Can
we construct them for an arbitrary physical system? The answer, as
we shall see, comes from the world of geometric mechanics and a
concept called symplecticity.

4 Geometric Mechanics

In the familiar Newtonian view of mechanics, we begin by adding
up the forces F on a body and writing the equations of motion using
the famous second law,

F = ma, (4)

where a represents the acceleration of the body. With geomet-
ric mechanics, however, we consider mechanics from a variational
point of view. In this section, we review the basic foundations of
Lagrangian mechanics, one of the two main flavors of geometric
mechanics (we will only point to some connections with Hamilto-
nian mechanics).

4.1 Lagrangian Mechanics

Consider a finite-dimensional dynamical system parameterized by
the state variable q, i.e., the vector containing all degrees of free-
dom of the system. In mechanics, a function of a position q and
a velocity q̇ called the Lagrangian function L is defined as the ki-
netic energy K (usually, only function of the velocity) minus the
potential energy U of the system (usually, only function of the state
variable):

L(q, q̇) = K(q̇)− U(q).

Variational Principle The action functional is then introduced
as the integral of L along a path q(t) for time t ∈ [0, T ]:

S(q) =

∫ T

0

L(q, q̇) dt.

With this definition, the main result of Lagrangian dynamics,
Hamilton’s principle, can be expressed quite simply: this varia-
tional principle states that the correct path of motion of a dynamical
system is such that its action has a stationary value, i.e., the inte-
gral along the correct path has the same value to within first-order
infinitesimal perturbations. As an “integral principle” this descrip-
tion encompasses the entire motion of a system between two fixed
times (0 and T in our setup). In more ways than one, this principle
is very similar to a statement on the geometry of the path q(t): the
action can be seen as the analog of a measure of “curvature”, and
the path is such that this curvature is extremized (i.e., minimized or
maximized).

Euler-Lagrange Equations How do we determine which path
optimizes the action, then? The method is similar to optimizing an
ordinary function. For example, given a function f(x), we know
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that its critical points exist where the derivative ∇f(x) = 0. Since
q is a path, we cannot simply take a “derivative” with respect to
q; instead, we take something called a variation. A variation of
the path q is written δq, and can be thought of as an infinitesimal
perturbation to the path at each point, with the important property
that the perturbation is null at the endpoints of the path. Computing
variations of the action induced by variations δq of the path q(t)
results in:

δS(q) = δ

∫ T

0

L(q(t), q̇(t)) dt =

∫ T

0

[
∂L

∂q
· δq +

∂L

∂q̇
· δq̇
]
dt

=

∫ T

0

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δq dt +

[
∂L

∂q̇
· δq
]T

0

,

where integration by parts is used in the last equality. When the
endpoints of q(t) are held fixed with respect to all variations δq(t)
(i.e., δq(0) = δq(T ) = 0), the rightmost term in the above equa-
tion vanishes. Therefore, the condition of stationary action for ar-
bitrary variations δq with fixed endpoints stated in Hamilton’s prin-
ciple directly indicates that the remaining integrand in the previous
equation must be zero for all time t, yielding what is known as the
Euler-Lagrange equations:

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0. (5)

For a given Lagrangian, this formula will give the equations of mo-
tion of the system.

Forced Systems To account for non-conservative forces or dis-
sipation F , the least action principle is modified as follows:

δ

∫ T

0

L(q(t), q̇(t)) dt+

∫ T

0

F (q(t), q̇(t)) · δq dt = 0 .

This is known as the Lagrange-d’Alembert principle.

Lagrangian vs. Hamiltonian Mechanics. Hamiltonian me-
chanics provides an alternative formulation, which is closely related
to the Lagrangian. The reader may consult any book on mechanics
for the relationships between the two descriptions. We simply point
out here (as it will be useful later) that in the Hamiltonian formu-
lation, the dynamics are described in phase space, i.e, the current
state of a dynamical system is given as a pair (q, p), where q is the
state variable, while p is the momentum, defined by p = ∂L/∂q̇.

4.2 Example

Let make the previous definitions more concrete by detailing a par-
ticularly simple example. Given a particle with mass M in a grav-
itational field, i.e., in a potential field V = Mg · q, the Lagrangian
is written:

L(q, q̇) =
1

2
q̇TMq̇ −Mg · q.

Taking the variation of the action, one gets:

δ

∫ b

a

(
1

2
q̇TMq̇ −Mg q

)
dt =

∫ b

a

(Mq̇ · δq̇ −Mg · δq) dt.

Next, we integrate the δq̇ term by parts; the boundary terms disap-
pear, since δq = 0 at the endpoints.

=

∫ b

a

(−Mq̈ −Mg) · δq dt = 0.

Since the integral equals 0 for any variation δq, the first term
inside the integral must equal 0. Therefore, the Euler-Lagrange
equations become:

Mq̈ = −Mg,

which are precisely the Newtonian equation of motion F = ma .

4.3 Symmetries and Invariants

Finally, we arrive at a crucial question: why exactly do physical
systems conserve certain quantities? If we can answer this ques-
tion and mimic the continuous dynamics in our discrete imple-
mentations, only then can we hope to get good numerical prop-
erties for our time integrators. This question is partially answered
by Noether’s theorem, an extremely powerful theorem in physics
which states that each symmetry of a system leads to a physical
invariant (i.e., a conserved quantity). For example, take the dynam-
ics of an elastic object in the void. The Lagrangian can easily be
shown to be translation invariant: translating all the mass particles
of the elastic object would not change the value of the Lagrangian.
Similarly, the Lagrangian is rotation-invariant as moving all the par-
ticles of the object by a global rotation has no reason to affect the
Lagrangian either. This means that the system has a translational
and rotational symmetry. Noether’s theorem then states that the
linear and angular momenta are preserved. These symmetries, if
respected in the discrete setting, will provide equivalent discrete in-
variants in time integrators! In fact, we will see that these invariants
can be preserved in time integrators at no extra computational cost
by simply respecting the geometric, variational nature of dynamics.

4.4 Phase Space and Symplecticity

To visualize a dynamical system, we often plot its trajectories in
phase space. In its simplest version as in the one-dimensional pen-
dulum case, it is in fact a phase plane where one axis represents the
position q and the other axis represents either velocity q̇ or, more
usually, momentum p = mq̇. Note that for higher dimensional sys-
tems, there is an additional axis corresponding to each additional
position component qi and its corresponding velocity q̇i (or mo-
mentum pi). The graphs that result from plotting the trajectories in
phase space are called phase portraits.

Going back to our motivating example of the pendulum, we can
now more clearly see the qualities/flaws of the time integrators by
looking at their respective phase portraits in Fig. 1. While the
pendulum’s phase portrait has a characteristic structure of nested,
energy-preserving orbits (since the oscillations are periodic), this
was not true for the two first discrete approximations: the trajec-
tories of explicit Euler spiraled outwards (dramatically increasing
magnitude of oscillations, thus energy), while those of implicit Eu-
ler spiraled inwards. Why did some of the phase portraits look bet-
ter than others? How can we preserve the closedness of the orbits
without making the time integrator more complicated?

One of the key features of Lagrangian flows (i.e., motions) is that
they are symplectic. Formally, this means that the flow preserves
the canonical two-form Ω = dqi ∧ dpi. In the two-dimensional
phase plane, this directly implies that the area of any phase-space
region is preserved under the flow (see Liouville’s theorem in clas-
sical mechanics). For example, let us take a given region of initial
conditions in phase-space. If we advance all these states simulta-
neously, the regions deforms under the flow in a way that preserves
the original area as shown in Fig. 3 a cat-head shaped region: this
phenomenon is called symplecticity. However, as seen on this same
figure, explicit and implicit Euler both fail the test of symplectic-
ity. Because orbits spiral outward under explicit Euler, a region
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will expand, and its area will increase. Conversely, implicit Eu-
ler decreases the area inside the evolving region. Preserving this
property of the flow in phase space for our time integrators (that
is, having them be symplectic in a discrete sense) is key to ensure
globally correct behavior!

5 Discrete Geometric Mechanics

Having quickly reviewed classical Lagrangian mechanics in the
continuous domain, we now explain how this geometric view of
mechanics can elegantly be mimicked in the discrete setting.

5.1 General Idea

The driving idea behind discrete geometric mechanics is to lever-
age the variational nature of mechanics and to preserve this varia-
tional structure in the discrete setting. In fact, very few integrators
have a variational nature: the explicit and implicit Euler methods
discussed above are not variational, and not surprisingly, they both
exhibited poor global behavior in the case of the pendulum. Instead
of simply approximating the equations of motion to first (or higher)
order as we did before, one can directly discretize the variational
principle behind them. That is, if one designs a discrete equivalent
of the Lagrangian, then discrete equations of motion can be easily
derived from it by paralleling the derivations followed in contin-
uous case. In essence, good numerical methods will come from
discrete analogs to the Euler-Lagrange equations—equations that
truly derive from a variational principle.

5.2 Discrete Lagrangian Dynamics

Setup The main idea is to discretize the least action princi-
ple directly rather than discretizing (5). To this end, a path
q(t) for t ∈ [0, T ] is replaced by a discrete path q : {t0 =
0, t1, . . . , tk, . . . , tN = T} where k,N ∈ N. Here, qk is viewed
as an approximation to q(tk).

Discrete Lagrangian The Lagrangian L is approximated
on each time interval [tk, tk+1] by a discrete Lagrangian1

Ld(qk, qk+1, h), with h being the time interval between two sam-
ples h = tk+1 − tk (chosen here to be constant for simplicity):

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q, q̇) dt.

Now, the right-hand side integral can be approximated through a
one-point quadrature, i.e., by the length of the interval times the
value of the integrand evaluated somewhere between qk and qk+1

and with q̇ replaced by (qk+1 − qk)/h:

Ld(qk, qk+1, h) = hL
(

(1− α)qk + αqk+1,
qk+1 − qk

h

)
(6)

where α ∈ [0, 1]. For α = 1/2, the quadrature is second-order
accurate, while any other value leads to linear accuracy.

1This term could also be called an action, as it is a time integral of a
Lagrangian; however, just like the term “discrete curvature” in CG refers
to a small local integral of a continuous curvature, we prefer this naming
convention.

Discrete Stationary Action Principle Given the discrete La-
grangian, the discrete action functional becomes simply a sum:

Sd :=Sd({qi}i=0..N )=

N−1∑
k=0

Ld(qk, qk+1)≈
∫ b

a

L(q, q̇) dt=S(q).

Taking fixed-endpoint variations of this discrete action Sd, we ob-
tain:

δSd =

N−1∑
k=0

[
D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1

]
,

where D1L (resp., D2L) denotes the partial derivative with respect
to the first (resp., second) arguments of L. Reindexing the right-
most terms, and using the fixed endpoint condition δq0 = δqN = 0,
one gets:

δSd =

N−1∑
k=1

[
D1Ld(qk, qk+1) +D2Ld(qk−1, qk)

]
· δqk.

Setting this variation equal to 0 and noting that each δqk is arbitrary,
we arrive at the discrete Euler-Lagrange (DEL) equations

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (7)

Notice that this condition only involves three consecutive posi-
tions. Therefore, for two given successive positions qk and qk+1,
Eq. (7) defines qk+2. That is, these equations of motion are actually
the algorithm for an integrator! And since the DEL equations de-
rive from the extremization of a discrete action, such an algorithm
enforces the variational aspect of the motion numerically.

Link to Previous Numerical Schemes Let us go back to the
pendulum case. For this system, the Lagragian (kinetic energy mi-
nus potential energy) is:

L(q, q̇) =
1

2
L2q̇2 + gL cos(q).

First, the user can convince her/himself that the Euler-Lagrange
equation is indeed, Eq. (1) through a simple derivation. Second,
it is also a simple (yet, interesting) exercise to verify that the sym-
plectic Euler integrator used earlier results from the DEL equations
just described, for the particular choice of α = 0 in the quadrature
rule defined in Eq. 6.

5.3 Update Rule in Phase Space

In mechanics, the initial conditions are typically specified as a po-
sition and a velocity or momentum rather than two positions, there-
fore it is beneficial to write (7) in a position-momentum form [West
2003]. To this end, define the momentum at time tk to be:

pk := D2Ld(qk−1, qk) = −D1Ld(qk, qk+1)

where the second equality holds due to (7). The position-
momentum form of the variational integrator discussed above is
then given by:

pk = −D1Ld(qk, qk+1) , pk+1 = D2Ld(qk, qk+1). (8)

For (qk, pk) known, (8)(left) is an (often implicit) equation whose
solution gives qk+1. qk+1 is then substituted in (8)(right) to find
pk+1. This provides an update rule in phase space.
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Figure 3: Symplecticity [reproduced from [Hairer et al. 2002]]: while a continuous Lagrangian system is symplectic (that is to say, in this simple case, an area
in phase space evolves along the flow without changing its area), discrete time integrators rarely share this property. From our three time integrators compared
in Section 3, only the last one is symplectic. In the background, the reader will recognize the shape of the orbits obtained in Fig. 1(right).

5.4 Adding Dissipation

In case of forcing and/or dissipation, the discrete action can be mod-
ified by adding the non-conservative force term and using the dis-
crete Lagrange-d’Alembert principle [Marsden and West 2001]:

δSd +

N∑
k=0

(
F−d (qk, qk+1) · δqk + F+

d (qk, qk+1) · δqk+1

)
=0.

where F−d (qk, qk+1) and F+
d (qk, qk+1) are discrete external forces

acting respectively on the right of qk and on the left of qk+1.
In other words, F−d (qk, qk+1) · δqk + F+

d (qk, qk+1) · δqk+1 can
be seen as a two-point quadrature of the continuous forcing term∫ tk+1

tk
F · δq dt. The forced discrete Euler-Lagrange equations can

be expressed in a convenient, position-momentum form as follows:

pk = −D1Ld(qk, qk+1)− F−d (qk, qk+1) ,

pk+1 = D2Ld(qk, qk+1) + F+
d (qk, qk+1).

This variational treatment of energy decay, despite its simplicity,
has also been proven superior to the usual time integration schemes
that often add numerical viscosity to get stability [West 2003].

5.5 Last Words

Variational integrators often perform better than their non-
variational counterparts because they preserve the underlying ge-
ometry of the physical system. This has two important conse-
quences. First, the integrators are guaranteed to be symplectic,
which in practice will result in excellent energy behavior, rather
than perpetual damping or blowing up. Second, they are also guar-
anteed to preserve discrete momenta of the system (via a discrete
version of Noether’s theorem). As a consequence, simulations and
animations using these integrators usually have great physical and
visual fidelity with low computational cost, even for dissipative
systems (see [Kharevych et al. 2006] for a discussion on damp-
ing in animation). To build upon this short introduction, the reader
is invited to investigate recent developments in variational integra-
tors, such as Lie group integrators, Hamilton-Pontryagin integra-
tors, asynchronous variational updates (where timesteps are differ-
ent for each mesh element), and stochastic variational integrators.

Caveat: The reader may be misled into thinking that ex-
plicit variational schemes does not require the typical Courant-
Friedrichs-Levy (CFL) condition (or equivalent) on the time step
size. This is, of course, untrue: the same usual theoretical lim-
itations of explicit schemes are still valid for symplectic explicit
schemes. However, we can easily design symplectic implicit
schemes that do not share this particular limitation, generally al-
lowing for much larger time steps. Finally, we can make them of ar-
bitrarily higher order by simply improving the quadrature rule used
to convert the continuous Lagrangian into a discrete Lagrangian.
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J. E., SCHRÖDER, P., AND DESBRUN, M. 2006. Geomet-
ric, variational integrators for computer animation. In ACM/EG
Symposium on Computer animation, 43–51.

LEW, A. 2003. Variational Time Integrators in Computational
Solid Mechanics. Phd thesis, California Institute of Technology.

MARSDEN, J. E., AND WEST, M. 2001. Discrete Mechanics and
Variational Integrators. Acta Numerica, 357–515.

PARENT, R. 2001. Computer Animation: Algorithms and Tech-
niques. Series in Computer Graphics. Morgan Kaufmann.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VET-
TERLING, W. T. 1992. Numerical Recipes in C: The Art of
Scientific Computing, 2nd ed. Cambridge University Press.

WEST, M. 2003. Variational Integrators. PhD thesis, California
Institute of Technology.

Discrete Differential Geometry: An Applied Introduction (Desbrun, Grinspun, Schröder, Wardetzky) SIGGRAPH Asia 2008

100


	Front matter
	Ch 1: Introduction to DDG: The geometry of plane curves
	Ch 2: What can we measure?
	Ch 3: Curvature measures for discrete surfaces
	Ch 4: A discrete model of thin shells
	Ch 5: Simple and efficient implementation of discrete plates and shells
	Ch 6: Discrete elastic rods
	Ch 7: Discrete Differential Forms for Computational Modeling
	Ch 8: Building your own DEC at home
	Ch 9: Stable, circulation-preserving, simplicial fluids
	Ch 10: Conformal equivalence of triangle meshes
	Ch 11: Discrete Laplace operators: no free lunch
	Ch 12: Discrete geometric mechanics for variational time integrators



