Persistence simplification of discrete Morse functions on surfaces (Oberwolfach report)

ULRICH BAUER, CARSTEN LANGE AND MAX WARDETZKY

1. INTRODUCTION

We apply the concept of persistent homology [1] to Forman's discrete Morse theory [2] on regular 2-manifold CW complexes and solve the problem of minimizing the number of critical points among all functions within a prescribed distance δ from a given input function. Our result achieves a lower bound on the number of critical points and improves on previous work [3] by a factor of two.

2. Discrete Morse theory

Let \mathcal{K} be a finite CW complex and K the set of cells of \mathcal{K} . The cell σ is a *face* of τ , denoted by $\sigma < \tau$, if σ is in the boundary of τ . *Facets* are faces of codimension 1. If the attaching maps are homeomorphisms, \mathcal{K} is called a *regular* complex. A *combinatorial surface* is a regular CW complex whose underlying space is a 2-manifold.

Discrete vector fields are one of the central concepts of discrete Morse theory. They are a purely combinatorial analogon of classical vector fields.

Definition (Discrete vector field). A discrete vector field V on a regular CW complex \mathcal{K} is a set of pairs of cells $(\sigma, \tau) \in K \times K$, with σ a facet of τ , such that each cell of K is contained in at most one pair of V.

Definition (V-path). Let V be a discrete vector field. A V-path Γ from a cell σ_0 to a cell σ_r is a sequence $\sigma_0 \tau_0 \sigma_1 \dots \tau_{r-1} \sigma_r$ of cells such that for every $0 \le i \le r-1$:

$$\sigma_i$$
 is a facet of τ_i and $(\sigma_i, \tau_i) \in V$,
 σ_{i+1} is a facet of τ_i and $(\sigma_{i+1}, \tau_i) \notin V$.

A V-path is a nontrivial closed path if $\sigma_0 = \sigma_r$ and r > 0.

Definition (Discrete gradient vector field). A gradient vector field is a discrete vector field V that does not admit any nontrivial closed V-paths.

Definition (Critical cell). A cell σ is a critical cell with respect to a discrete gradient vector field V if σ is not contained in any pair of V. A cell that is not critical is a regular cell.

The main technique for reducing the number of critical points is that of *reversing* a gradient vector field V along a V-path between two critical cells τ and σ :

Theorem ([2], Theorem 11.1). Let σ and τ be critical cells of a gradient vector field V with a unique V-path Γ from $\partial \tau$ to σ . Then there is a gradient vector field \tilde{V} obtained by reversing V along the path Γ . The critical cells of \tilde{V} are exactly the critical cells of V other than $\{\sigma, \tau\}$. In particular, $V = \tilde{V}$ except along the path Γ . As in smooth Morse theory, a discrete gradient vector field can be understood as the gradient of some function in the following sense:

Definition ((Pseudo-)Morse function). A discrete Morse function is a function $f : K \to \mathbb{R}$ on the cells of a regular CW complex \mathcal{K} if there is a gradient vector field V such that for all pairs of cells we have

$$\sigma \text{ is a facet of } \tau \Rightarrow \begin{cases} f(\sigma) < f(\tau) & \text{if } (\sigma, \tau) \notin V, \\ f(\sigma) \ge f(\tau) & \text{if } (\sigma, \tau) \in V. \end{cases}$$

For a discrete pseudo-Morse function, the strict inequality is replaced by a weak one, i.e., $f(\sigma) \leq f(\tau)$ if $(\sigma, \tau) \notin V$. In either case, we call V consistent with f.

Definition (Induced partial order). The partial order \prec_V induced by a discrete gradient vector field V is the transitive relation generated by

$$\sigma \text{ is a facet of } \tau \Rightarrow \begin{cases} \sigma \prec_V \tau & \text{if } (\sigma, \tau) \notin V, \\ \sigma \succ_V \tau & \text{if } (\sigma, \tau) \in V. \end{cases}$$

For any pseudo-Morse function g consistent with V and any pair of cells (ϕ, ρ) , $\phi \prec_V \rho$ implies $g(\phi) \leq g(\rho)$.

3. Persistent Morse homology

Homological persistence [1] is used to investigate the change of the homology groups in a sequence of nested topological spaces. We study nested subcomplexes of a given CW complex.

Definition (Level subcomplex). Let f be a discrete Morse function on a regular CW complex \mathcal{K} . For a cell $\sigma \in K$, the level subcomplex is the subcomplex of \mathcal{K} consisting of all cells ρ with $f(\rho) \leq f(\sigma)$ together with their faces:

$$\mathcal{K}(\sigma) := \bigcup_{\substack{\rho \in K \\ f(\rho) \leq f(\sigma)}} \bigcup_{\phi \in K} \phi \,.$$

For $\mathcal{K}(\phi) \subset \mathcal{K}(\rho)$, let $i_*^{\phi,\rho} : H_*(\mathcal{K}(\phi)) \to H_*(\mathcal{K}(\rho))$ denote the homomorphism induced by inclusion. Let σ and τ be critical cells of dimension d and (d + 1), respectively, such that $f(\sigma) < f(\tau)$. The *predecessor* of σ is the cell σ_- with the largest f-value such that $f(\sigma_-) < f(\sigma)$, and similarly for τ_- . Now consider the sequence

$$H_d(\mathcal{K}(\sigma_-)) \to H_d(\mathcal{K}(\sigma)) \to H_d(\mathcal{K}(\tau_-)) \to H_d(\mathcal{K}(\tau))$$

induced by inclusion.

Definition (Birth, death, persistence pair). Let f be an injective Morse function on a regular CW complex. We say that a class $h \in H_*(\mathcal{K}(\sigma))$ is born at (or created by) σ if

$$h \notin \operatorname{im}(i_*^{\sigma_-,\sigma}).$$

Moreover, we say that a class $h \in H_*(\mathcal{K}(\sigma))$ that is born at σ dies entering (or gets merged by) τ if

$$i_d^{\,\sigma,\,\tau}(h)\in \operatorname{im}(i_*^{\,\sigma_-,\,\tau}) \quad but \quad i_d^{\,\sigma,\,\tau_-}(h)\not\in \operatorname{im}(i_*^{\,\sigma_-,\,\tau_-}).$$

If there exists a class h that is born at σ and dies entering τ , then (σ, τ) is a persistence pair. The difference $f(\tau) - f(\sigma)$ is called the persistence of (σ, τ) .

To uniquely define persistence pairs for a *pseudo-Morse* function f consistent with some gradient vector field V, we require a total order on the cells. This can be achieved by extending the partial order \prec_V to a total order, which allows us to speak about persistence pairs of (f, V).

4. TOPOLOGICAL SIMPLIFICATION OF FUNCTIONS

From now on, let f be a pseudo-Morse function consistent with a discrete gradient vector field V on a combinatorial surface \mathcal{K} . From the stability theorem for persistence diagrams [4], we can deduce the following lower bound on the number of persistence pairs, and therefore on the number of critical points:

Lemma. For a pseudo-Morse function f_{δ} with $||f_{\delta} - f||_{\infty} < \delta$ and consistent with a gradient vector field V_{δ} , the number of persistence pairs of (f_{δ}, V_{δ}) is bounded from below by the number of persistence pairs of f with persistence $\geq 2\delta$.

We are interested in functions that achieve this lower bound:

Definition (Perfect δ -simplification). A perfect δ -simplification of (f, V) is a pseudo-Morse function f_{δ} consistent with a gradient vector field V_{δ} , such that $||f_{\delta} - f||_{\infty} < \delta$ and the number of persistence pairs of (f_{δ}, V_{δ}) is equal to the number of persistence pairs of f with persistence $\geq 2\delta$.

Our main result states that a perfect δ -simplification always exists for a discrete pseudo-Morse function on a combinatorial surface.

Theorem. Let f be a discrete pseudo-Morse function on a combinatorial surface. Then there exists a perfect δ -simplification of f.

The proof of this theorem is constructive. An analogous statement is not true in higher dimensions or for non-manifold complexes.

References

- H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete and Computational Geometry, 28(4):511–533, 2002.
- [2] R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134(1):90–145, 1998.
- [3] H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-sensitive simplification of functions on 2-manifolds. In SCG '06: Proceedings of the 22nd ACM Symposium on Computational Geometry, pages 127–134. ACM, 2006.
- [4] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete and Computational Geometry, 37(1):103–120, 2007.