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1. Introduction

We apply the concept of persistent homology [1] to Forman’s discrete Morse
theory [2] on regular 2-manifold CW complexes and solve the problem of minimiz-
ing the number of critical points among all functions within a prescribed distance
δ from a given input function. Our result achieves a lower bound on the number
of critical points and improves on previous work [3] by a factor of two.

2. Discrete Morse theory

Let K be a finite CW complex and K the set of cells of K. The cell σ is a
face of τ , denoted by σ < τ , if σ is in the boundary of τ . Facets are faces of
codimension 1. If the attaching maps are homeomorphisms, K is called a regular
complex. A combinatorial surface is a regular CW complex whose underlying
space is a 2-manifold.

Discrete vector fields are one of the central concepts of discrete Morse theory.
They are a purely combinatorial analogon of classical vector fields.

Definition (Discrete vector field). A discrete vector field V on a regular CW
complex K is a set of pairs of cells (σ, τ) ∈ K ×K, with σ a facet of τ , such that
each cell of K is contained in at most one pair of V .

Definition (V -path). Let V be a discrete vector field. A V -path Γ from a cell σ0

to a cell σr is a sequence σ0τ0σ1 . . . τr−1σr of cells such that for every 0 ≤ i ≤ r−1:

σi is a facet of τi and (σi, τi) ∈ V,
σi+1 is a facet of τi and (σi+1, τi) 6∈ V.

A V -path is a nontrivial closed path if σ0 = σr and r > 0.

Definition (Discrete gradient vector field). A gradient vector field is a discrete
vector field V that does not admit any nontrivial closed V-paths.

Definition (Critical cell). A cell σ is a critical cell with respect to a discrete
gradient vector field V if σ is not contained in any pair of V . A cell that is not
critical is a regular cell.

The main technique for reducing the number of critical points is that of reversing
a gradient vector field V along a V -path between two critical cells τ and σ:

Theorem ([2], Theorem 11.1). Let σ and τ be critical cells of a gradient vector
field V with a unique V -path Γ from ∂τ to σ. Then there is a gradient vector
field Ṽ obtained by reversing V along the path Γ. The critial cells of Ṽ are exactly
the critical cells of V other than {σ, τ}. In particular, V = Ṽ except along the
path Γ.
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As in smooth Morse theory, a discrete gradient vector field can be understood
as the gradient of some function in the following sense:

Definition ((Pseudo-)Morse function). A discrete Morse function is a function
f : K → R on the cells of a regular CW complex K if there is a gradient vector
field V such that for all pairs of cells we have

σ is a facet of τ ⇒

{
f(σ) < f(τ) if (σ, τ) 6∈ V,
f(σ) ≥ f(τ) if (σ, τ) ∈ V.

For a discrete pseudo-Morse function, the strict inequality is replaced by a weak
one, i.e., f(σ) ≤ f(τ) if (σ, τ) 6∈ V . In either case, we call V consistent with f .

Definition (Induced partial order). The partial order ≺V induced by a discrete
gradient vector field V is the transitive relation generated by

σ is a facet of τ ⇒

{
σ ≺V τ if (σ, τ) 6∈ V,
σ �V τ if (σ, τ) ∈ V.

For any pseudo-Morse function g consistent with V and any pair of cells (φ, ρ),
φ ≺V ρ implies g(φ) ≤ g(ρ).

3. Persistent Morse homology

Homological persistence [1] is used to investigate the change of the homology
groups in a sequence of nested topological spaces. We study nested subcomplexes
of a given CW complex.

Definition (Level subcomplex). Let f be a discrete Morse function on a regular
CW complex K. For a cell σ ∈ K, the level subcomplex is the subcomplex of K
consisting of all cells ρ with f(ρ) ≤ f(σ) together with their faces:

K(σ) :=
⋃
ρ∈K

f(ρ)≤f(σ)

⋃
φ∈K
φ≤ρ

φ .

For K(φ) ⊂ K(ρ), let iφ, ρ∗ : H∗(K(φ)) → H∗(K(ρ)) denote the homomorphism
induced by inclusion. Let σ and τ be critical cells of dimension d and (d + 1),
respectively, such that f(σ) < f(τ). The predecessor of σ is the cell σ− with the
largest f -value such that f(σ−) < f(σ), and similarly for τ−. Now consider the
sequence

Hd(K(σ−))→ Hd(K(σ))→ Hd(K(τ−))→ Hd(K(τ))

induced by inclusion.

Definition (Birth, death, persistence pair). Let f be an injective Morse function
on a regular CW complex. We say that a class h ∈ H∗(K(σ)) is born at (or
created by) σ if

h 6∈ im(iσ−, σ∗ ).
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Moreover, we say that a class h ∈ H∗(K(σ)) that is born at σ dies entering (or
gets merged by) τ if

iσ, τd (h) ∈ im(iσ−, τ∗ ) but i
σ, τ−
d (h) 6∈ im(iσ−, τ−∗ ).

If there exists a class h that is born at σ and dies entering τ , then (σ, τ) is a
persistence pair. The difference f(τ)− f(σ) is called the persistence of (σ, τ).

To uniquely define persistence pairs for a pseudo-Morse function f consistent
with some gradient vector field V , we require a total order on the cells. This can
be achieved by extending the partial order ≺V to a total order, which allows us to
speak about persistence pairs of (f, V ).

4. Topological simplification of functions

From now on, let f be a pseudo-Morse function consistent with a discrete gra-
dient vector field V on a combinatorial surface K. From the stability theorem for
persistence diagrams [4], we can deduce the following lower bound on the number
of persistence pairs, and therefore on the number of critical points:

Lemma. For a pseudo-Morse function fδ with ‖fδ−f‖∞ < δ and consistent with
a gradient vector field Vδ, the number of persistence pairs of (fδ, Vδ) is bounded
from below by the number of persistence pairs of f with persistence ≥ 2δ.

We are interested in functions that achieve this lower bound:

Definition (Perfect δ-simplification). A perfect δ-simplification of (f, V ) is a
pseudo-Morse function fδ consistent with a gradient vector field Vδ, such that
‖fδ − f‖∞ < δ and the number of persistence pairs of (fδ, Vδ) is equal to the
number of persistence pairs of f with persistence ≥ 2δ.

Our main result states that a perfect δ-simplification always exists for a discrete
pseudo-Morse function on a combinatorial surface.

Theorem. Let f be a discrete pseudo-Morse function on a combinatorial surface.
Then there exists a perfect δ-simplification of f .

The proof of this theorem is constructive. An analogous statement is not true
in higher dimensions or for non-manifold complexes.
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