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1. INTRODUCTION

We apply the concept of persistent homology [1] to Forman’s discrete Morse
theory [2] on regular 2-manifold CW complexes and solve the problem of minimiz-
ing the number of critical points among all functions within a prescribed distance
0 from a given input function. Our result achieves a lower bound on the number
of critical points and improves on previous work [3] by a factor of two.

2. DISCRETE MORSE THEORY

Let K be a finite CW complex and K the set of cells of K. The cell ¢ is a
face of 7, denoted by o < 7, if ¢ is in the boundary of 7. Facets are faces of
codimension 1. If the attaching maps are homeomorphisms, K is called a regular
complex. A combinatorial surface is a regular CW complex whose underlying
space is a 2-manifold.

Discrete vector fields are one of the central concepts of discrete Morse theory.
They are a purely combinatorial analogon of classical vector fields.

Definition (Discrete vector field). A discrete vector field V' on a regular CW
complex K is a set of pairs of cells (0,7) € K x K, with o a facet of T, such that
each cell of K is contained in at most one pair of V.

Definition (V-path). Let V be a discrete vector field. A V-path T' from a cell o
to a cell o, is a sequence ogTo07 . .. Tr_10. of cells such that for every0 < i <r—1:

o; 1s a facet of 7, and (oy,7;) €V,
oit1 18 a facet of 7, and (0j41,7) € V.
A V-path is a nontrivial closed path if o9 = o, and r > 0.

Definition (Discrete gradient vector field). A gradient vector field is a discrete
vector field V' that does not admit any nontrivial closed V-paths.

Definition (Critical cell). A cell o is a critical cell with respect to a discrete
gradient vector field V' if o is not contained in any pair of V. A cell that is not
critical is a regular cell.

The main technique for reducing the number of critical points is that of reversing
a gradient vector field V along a V-path between two critical cells 7 and o:

Theorem ([2], Theorem 11.1). Let o and 7 be critical cells of a gradient vector
field V' with a unique V-path T from Ot to o. Then there is a gradient vector
field V obtained by reversing V' along the path I'. The critial cells 0f\~/ are exactly
the critical cells of V' other than {o,7}. In particular, V = 1% except along the
path T'.



As in smooth Morse theory, a discrete gradient vector field can be understood
as the gradient of some function in the following sense:

Definition ((Pseudo-)Morse function). A discrete Morse function is a function
f: K — R on the cells of a reqgular CW complex IC if there is a gradient vector
field V' such that for all pairs of cells we have

flo) < f(r) if(o,7) ¢V,
flo) > f(r) if(o,7) € V.

For a discrete pseudo-Morse function, the strict inequality is replaced by a weak
one, i.e., f(o) < f(r) if (o,7) € V. In either case, we call V consistent with f.

o isafacetofr:{

Definition (Induced partial order). The partial order <y induced by a discrete
gradient vector field V is the transitive relation generated by

U'<VT Zf(O',T)ng,
o=y 1 if(o,7)€EV.

o isafacetofT:{

For any pseudo-Morse function g consistent with V' and any pair of cells (¢, p),
¢ <v p implies g(¢) < g(p).

3. PERSISTENT MORSE HOMOLOGY

Homological persistence [1] is used to investigate the change of the homology
groups in a sequence of nested topological spaces. We study nested subcomplexes
of a given CW complex.

Definition (Level subcomplex). Let f be a discrete Morse function on a reqular
CW complex K. For a cell 0 € K, the level subcomplex is the subcomplex of K
consisting of all cells p with f(p) < f(o) together with their faces:

K(o) = U U o.

peEK  ¢eK
F(p)<f(o) ¢<p

For K(¢) C K(p), let .27 : H.(K(¢)) — H.(K(p)) denote the homomorphism
induced by inclusion. Let o and 7 be critical cells of dimension d and (d + 1),
respectively, such that f(o) < f(7). The predecessor of o is the cell o_ with the
largest f-value such that f(o_) < f(o), and similarly for 7_. Now consider the
sequence

Hq(K(0-)) — Ha(K(0)) — Ha(K(7-)) — Ha(K(7))
induced by inclusion.

Definition (Birth, death, persistence pair). Let f be an injective Morse function
on a reqular CW complex. We say that a class h € H.(K(o)) is born at (or
created by) o if

h &im(iy 7).
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Moreover, we say that a class h € H,(K(o)) that is born at o dies entering (or
gets merged by) 7 if

i7" (h) €im(iy ") but iy 7 (k) €im(i ).

If there exists a class h that is born at o and dies entering T, then (o,7) is a
persistence pair. The difference f(7) — f(o) is called the persistence of (o, ).

To uniquely define persistence pairs for a pseudo-Morse function f consistent
with some gradient vector field V', we require a total order on the cells. This can
be achieved by extending the partial order <y to a total order, which allows us to
speak about persistence pairs of (f, V).

4. TOPOLOGICAL SIMPLIFICATION OF FUNCTIONS

From now on, let f be a pseudo-Morse function consistent with a discrete gra-
dient vector field V' on a combinatorial surface IC. From the stability theorem for
persistence diagrams [4], we can deduce the following lower bound on the number
of persistence pairs, and therefore on the number of critical points:

Lemma. For a pseudo-Morse function fs with ||fs — flleo < & and consistent with
a gradient vector field Vs, the number of persistence pairs of (fs,Vs) is bounded
from below by the number of persistence pairs of f with persistence > 26.

We are interested in functions that achieve this lower bound:

Definition (Perfect -simplification). A perfect d-simplification of (f,V) is a
pseudo-Morse function fs consistent with a gradient vector field Vs, such that
Ifs — fllo < 0 and the number of persistence pairs of (fs,Vs) is equal to the
number of persistence pairs of f with persistence > 26.

Our main result states that a perfect d-simplification always exists for a discrete
pseudo-Morse function on a combinatorial surface.

Theorem. Let f be a discrete pseudo-Morse function on a combinatorial surface.
Then there exists a perfect §-simplification of f.

The proof of this theorem is constructive. An analogous statement is not true
in higher dimensions or for non-manifold complexes.

REFERENCES

[1] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.
Discrete and Computational Geometry, 28(4):511-533, 2002.

[2] R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134(1):90-145, 1998.

[3] H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-sensitive simplification of func-
tions on 2-manifolds. In SCG ’06: Proceedings of the 22nd ACM Symposium on Computa-
tional Geometry, pages 127-134. ACM, 2006.

[4] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete
and Computational Geometry, 37(1):103-120, 2007.


http://dx.doi.org/10.1007/s00454-002-2885-2
http://dx.doi.org/10.1006/aima.1997.1650
http://dx.doi.org/10.1145/1137856.1137878
http://dx.doi.org/10.1145/1137856.1137878
http://dx.doi.org/10.1007/s00454-006-1276-5

	1. Introduction
	2. Discrete Morse theory
	3. Persistent Morse homology
	4. Topological simplification of functions
	References

