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Motivation from integrable geometry

Surfaces of constant (mean or Gauss) curvature are often expressed in special
parametrizations (e.g., conformal curvature line or asymptotic line), where their
integrability equations reduce to completely integrable (”soliton”) PDEs from the-
oretical physics. For each of these specially parametrized constant curvature sur-
faces, there exists a one parameter associated family that stays within the surface
class (e.g., minimal surfaces stay minimal), but the parametrization may change.

Discrete partial finite difference analogues for many of these integrable PDEs
have been discovered, where discrete integrability is encoded by a certain closing
condition around a 3D cube [5]. In this way algebraic constructions for discrete
analogues of different classes of surfaces (reviewed in [3]), such as minimal surfaces,
surfaces of constant mean curvature, and constant negative Gauss curvature, have
been described, together with their one parameter associated families. However, a
general notion of curvatures for these surfaces that is constant for the appropriate
algebraic constructions has been lacking.

Investigating the geometry of these algebraic families leads us to the following
curvature theory, which not only retrieves the thoroughly investigated curvature
definitions in the case of planar quads [8, 4], but extends to the general setting of
nonplanar quad meshes.

Quad meshes as discrete parametrized surfaces

A natural discrete analogue of a smooth parametrized surface patch is given by
a quad mesh patch, a map f : D ⊂ Z2 → R3 with nonvanishing straight edges.
Notice, in particular, that the quadrilateral faces in R3 may be nonplanar. Piecing
together such patches defines a quad mesh with more general combinatorics and is
understood as an atlas for a surface. To every vertex of a quad mesh we associate
a unit ”normal” vector and define the corresponding map, written per patch as
n : D ⊂ Z2 → S2, as the discrete Gauss map. An arbitrary Gauss map will not
be ”normal” to its quad mesh, so we only allow for those Gauss maps that satisfy
a certain constraint along each edge. The resulting class of edge-constraint quad
meshes is our focus.1

Definition. A quad mesh f with Gauss map n is called edge-constraint if for
every edge of f in R3 the average of the normals at its end points is perpendicular
to f , i.e., for i = 1, 2 we have (fi − f) · 12 (ni + n) = 0.

1We make use of shift notation to describe quantities per quad: f := f(k, `), f1 := f(k+1, `),

and f2 := f(k, ` + 1), so f12 := f(k + 1, ` + 1); n, n1, n2, and n12 are defined similarly.
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Curvatures from offsets. For an edge-constraint quad mesh f with Gauss map
n, the offset family is given by adding multiples of the Gauss map to each vertex,
i.e., f t := f + tn. Notice that every mesh of the offset family is edge-constraint
with the same Gauss map. In the smooth setting, corresponding tangent planes
between a surface, its normal offsets, and common Gauss map are parallel. This
allows one to compare areas and derive curvatures.

In order to mimic this definition of curvatures in the discrete case, let Qn =
(n, n1, n12, n2) be a Gauss map quad with corresponding quad Qf = (f, f1, f12, f2)
and offset quads Qft . Define the discrete Gauss map partial derivatives as the
midpoint connectors of Qn, i.e., nx := 1

2 (n12 +n1)− 1
2 (n2 +n) and ny := 1

2 (n12 +

n2)− 1
2 (n1 + n). We define the common quad tangent plane between Qn, Qf , and

Qft as the plane spanned by nx, ny; and we call N :=
nx×ny

‖nx×ny‖ the projection

direction.2 The midpoint connectors of Qf and Qft do not lie in this common
tangent plane, so we project them to the plane spanned by nx and ny. The partial
derivatives fx, fy and f t

x, f
t
y are each defined as the projection (induced by N) of

the corresponding midpoint connectors.
The curvature theory for edge-constraint quad meshes is now built per quad

and mimics the smooth setting.

Definition. The mixed area form per quad of two quad meshes g, h sharing a
Gauss map n is given by A(g, h) := 1

2 (det(gx, hy, N) + det(hx, gy, N)).

Note that when corresponding quads of g, h and n are in fact planar, lying in
parallel planes, and h = g then the quantity A(g, g) coincides with the usual area
of a quad.

Lemma. The area of an offset quad satisfies the Steiner formula: A(f t, f t) =
A(f, f) + 2tA(f, n) + t2A(n, n).

As in the smooth setting, factoring out A(f, f) defines the mean and Gauss
curvature.

Definition. The mean and Gauss curvature per quad of an edge-constraint quad

mesh are given by H := A(f,n)
A(f,f) and K := A(n,n)

A(f,f) , respectively.

Fundamental forms, shape operator, and principal curvatures. Funda-
mental forms of a parametrized surface can be written in terms of the partial
derivatives in the tangent plane at each point. The same formulas define these
objects per common quad tangent plane of an edge-constraint quad mesh.

Definition. The fundamental forms are defined as I :=

(
fx · fx fx · fy
fy · fx fy · fy

)
,

II :=

(
fx · nx fx · ny

fy · nx fy · ny

)
, and III :=

(
nx · nx nx · ny

ny · nx ny · ny

)
. The shape operator

is given by S := I−1II.

2To include the cases when nx and ny are parallel (corresponding to developable, i.e., vanishing
Gauss curvature, surfaces), we in fact define a family of projection directions U := {N ∈ S2| N ⊥
span{nx, ny}}. The mean and Gauss curvatures are invariant to the choice of N ∈ U .
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Observe that the Gauss map being normal to the surface guarantees the exis-
tence of principal curvatures and curvature lines.

Lemma. The edge-constraint implies that the second fundamental form is sym-
metric (fx · ny = nx · fy), so the shape operator is diagonalizable.

Definition. The real eigenvalues k1, k2 of the shape operator are the principal
curvatures per quad. The corresponding eigenvectors yield curvature directions in
each quad tangent plane.

The expected relationships hold between the principal curvatures, fundamental
forms, and the mean and Gauss curvatures defined via the Steiner formula.

Lemma. The following are true in the smooth and discrete case:
1. K = k1 k2 = det II/ det I, 2. H = 1

2 (k1 + k2),

3. III− 2HII +KI = 0, and 4. A(f, f)2 = det I.

Constant curvature quad meshes

It turns out that many integrable geometries are edge-constraint quad meshes of
the appropriate curvature; an example of non integrable geometry is recovered,
too. For more details see [6].

Theorem. The following previously defined algebraic quad meshes are edge-constraint
of the appropriate constant curvature:

1. Discrete minimal [2] and their associated families,
2. Discrete cmc [3] and their associated families,
3. Discrete constant negative Gauß curvature [1] and their associated families,

Theorem. Discrete developable quad meshes built from planar strips [7] can be
extended to edge-constraint quad meshes with vanishing Gauss curvature.
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