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Abstract. The cotangent formula constitutes an intrinsic discretization of the Laplace–

Beltrami operator on polyhedral surfaces in a finite element sense. This note gives

an overview of approximation and convergence properties of discrete Laplacians and

mean curvature vectors for polyhedral surfaces located in the vicinity of a smooth sur-

face in euclidean 3–space. In particular, we show that mean curvature vectors converge

in the sense of distributions, but fail to converge in L
2.

1. Introduction

There are various approaches toward a purely discrete theory of surfaces for which clas-

sical differential geometry, and in particular the notion of curvature, appears as the limit

case. Examples include the theory of spaces of bounded curvature [1, 24], Lipschitz–

Killing curvatures [5, 12, 13], normal cycles [6, 7, 30, 31], circle patterns and discrete

conformal structures [2, 17, 26, 28], and geometric finite elements [10, 11, 15, 20, 29].

In this note we take a finite element viewpoint, or more precisely a functional-analytic

one, and give an overview over convergence properties of weak versions of the Laplace–

Beltrami operator and the mean curvature vector for embedded polyhedral surfaces.

Convergence. Consider a sequence of polyhedral surfaces {Mn}, embedded into euclid-

ean 3–space, which converges (in an appropriate sense) to a smooth embedded surface M .

One may ask: What are the measures and conditions such that metric and geometric ob-

jects on Mn – like intrinsic distance, area, mean curvature, Gauss curvature, geodesics and

the Laplace–Beltrami operator – converge to the corresponding objects on M? To date no

complete answer has been given to this question in its full generality. For example, the

approach of normal cycles [6, 7], while well-suited for treating convergence of curvatures

of embedded polyhedra in the sense of measures, cannot deal with convergence of ellip-

tic operators such as the Laplacian. The finite element approach, on the other hand, while

well-suited for treating convergence of elliptic operators (cf. [10, 11]) and mean curvature

vectors, has its difficulties with Gauss curvature.

Despite the differences between these approaches, there is a remarkable similarity:

The famous lantern of Schwarz [27] constitutes a quite general example of what can go



2 Max Wardetzky

wrong – pointwise convergence of surfaces without convergence of their normal fields.

Indeed, while one cannot expect convergence of metric and geometric properties of em-

bedded surfaces from pointwise convergence alone, it often suffices to additionally re-

quire convergence of normals. The main technical step, to show that this is so, is the

construction of a bi-Lipschitz map between a smooth surface M , embedded into euclid-

ean 3–space, and a polyhedral surface Mh nearby, such that the metric distortion induced

by this map is bounded in terms of the Hausdorff distance between M and Mh, the devi-

ation of normals, and the shape operator of M . (See Theorem 3.3 and compare [19] for a

similar result.) This map then allows for explicit error estimates for the distortion of area

and length, and – when combined with a functional-analytic viewpoint – error estimates

for the Laplace–Beltrami operator and the mean curvature vector.

We treat convergence of Laplace–Beltrami operators in operator norm, and we dis-

cuss two distinct concepts of mean curvature: a functional representation (in the sense

of distributions) as well as a representation as a piecewise linear function. We observe

that one concept (the functional) converges whereas the other (the function) in general

does not. This is in accordance with what has been observed in geometric measure the-

ory [5, 6, 7]: for polyhedral surfaces approximating smooth surfaces, in general one can-

not expect pointwise convergence of curvatures, but only convergence in an integrated

sense.

A brief history of the cotangent formula. The cotangent representation for the Dirich-

let energy of piecewise linear functions on triangular nets seems to have first appeared

in Duffin’s work [9] in 1959. In 1988 Dziuk [10, 11] studied linear finite elements on

polyhedral surfaces – without explicit reference to the cotangent formula. In 1993 Pinkall

and Polthier [20] employed the cotangent formula for a functional representation of the

discrete mean curvature vector, leading to explicitly computable discrete minimal sur-

faces [16, 21, 22, 23, 25]. Later, Desbrun et al. [8, 18] used the cotangent formula for

expressing the area gradient of piecewise linear surfaces. Their approach rescales with

an area factor, which effectively means dealing with functions (pointwise quantities) in-

stead of functionals (integrated quantities). Based on intrinsic Delaunay triangulations,

Bobenko and Springborn [3] recently derived an intrinsic version of the cotangent for-

mula on polyhedral surfaces that obeys the discrete maximum principle.

2. Polyhedral surfaces

By a polyhedral surface Mh, we mean a metric space obtained by gluing finitely many flat

euclidean triangles isometrically along their edges, such that the result is homeomorphic

to a 2–dimensional manifold. Metrically, polyhedral surfaces are length spaces in the

sense of Gromov [14]. Two triangles which share an edge can always be unfolded such

that they become coplanar, so that no intrinsic curvature occurs across edges. All intrinsic

curvatures are concentrated at vertices which we treat as euclidean cone points. A metric

cone Cθ with cone angle θ is the set {(r, ϕ)|0 ≤ r; ϕ ∈ R/θZ}/(0,ϕ1)∼(0,ϕ2) together

with the (infinitesimal) metric ds2 = dr2 + r2 dϕ2, see Figure 1.
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θ

FIGURE 1. A neighborhood of an inner vertex of Mh with angle defect

2π − θ is isometric to a metric cone with cone angle θ.

2.1. Finite elements on polyhedra

Polyhedral surfaces are piecewise linear; hence, they can be treated naturally by the finite

element method, in particular, by studying finite-dimensional subspaces of the Sobolev

space H1(Mh). First, we review the finite element setting, then we discuss Sobolev spaces

on polyhedral surfaces.

Given f ∈ L2(Mh), the Dirichlet problem on Mh is to find u ∈ H1
0(Mh) such that

∫

Mh

gh(∇hu,∇hϕ) d volh =

∫

Mh

f · ϕd volh ∀ϕ ∈ H1
0(Mh) ,

where gh is the euclidean cone metric on Mh and ∇h is the associated gradient. As in

the planar case, an abstract Galerkin scheme is defined by restricting the space of test

functions and the space of solutions to a finite-dimensional subspace V0 ⊂ H1
0(Mh). As

usual, the subscript 0 denotes zero boundary conditions (we assume ∂Mh 6= ∅; the case

∂Mh = ∅ is treated similarly by setting H1
0(Mh) = {u ∈ H1(Mh) |

∫

u = 0}).

Definition 2.1 (finite element space). For vertices p ∈ Mh \ ∂Mh and q ∈ Mh, let

φp(q) :=

{

1 if q = p
0 else ,

and extend φp to all of Mh by linearly interpolating on triangles. Then {φp} is a nodal

basis for the finite-dimensional space Sh,0.

Every uh ∈ Sh,0 can be written as uh =
∑

q uq
hφq with coefficients uq

h ∈ R. Let

−∆pq :=

∫

Mh

gh(∇hφp,∇hφq) d volh

bp :=

∫

Mh

f · φp d volh .

Then the discrete Dirichlet problem amounts to a finite-dimensional linear solve: find uq
h

such that

−
∑

q

∆pqu
q
h = bp .

With these notations one readily verifies the cotangent representation of ∆pq , see [20].
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FIGURE 2. Only the angles αpq and βpq enter into the expression for ∆pq .

Lemma 2.2 (cotangent formula). The nonzero entries of the discrete cotan–Laplacian

on a polyhedral surface are given by

∆pq =
1

2
(cot αpq + cot βpq) and ∆pp = −

∑

qi∈link(p)

∆pqi
,

if p and q share an edge, and where αpq and βpq denote the angles opposite to the edge

pq in the two triangles adjacent to pq.

2.2. Sobolev spaces on polyhedra

On a smooth manifold M the definition of H1(M) – the space of square-integrable func-

tions with square-integrable weak derivatives – can be based on a locally finite partition

of M into smooth charts. The requirement on these charts is that the difference between

the metric tensor on M and the flat metric tensor on E
n is uniformly bounded. (Such

charts exist, for example, under the assumption of uniform curvature bounds on M .) In

the polyhedral case, a difficulty arises from the fact that Mh is only of class C0,1. A

very general framework for defining H1(Mh) on compact Lipschitz manifolds (of which

finite polyhedra are just a special case) via local charts is provided by a consequence

of Rademacher’s theorem: weak differentiability is preserved under bi-Lipschitz maps.

(See, e.g., Cheeger [4] and Ziemer [32].) In the following we will base our definition of

H1(Mh) on the assumption that there is a smooth surface M in the vicinity of Mh and a

bi-Lipschitz map between M and Mh with uniformly bounded Lipschitz constant (for the

existence of such a map, see Theorem 3.3), so that we can identify H1(Mh) with H1(M).

3. Convergence and approximation

3.1. Comparing two surfaces

If M ⊂ E
3 is a compact smooth surface, and Mh is a polyhedral surface close to it, we

need a map in order to compare the two surfaces. One way to define such a map is to

map each point on Mh to its closest point on M . This is well-defined for points within

the reach of M . The reach of M is the distance of M to its medial axis. The medial axis

of M is the set of those points in E
3 which do not have a unique nearest point in M . The
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FIGURE 3. If Mh is a normal graph over M then Φ takes a point x
on M to the intersection of Mh with the normal line through x. The

inverse, Ψ = Φ−1, thus realizes the pointwise distance from Mh to M .

reach is related to local curvature properties of M , more precisely

reach(M) ≤ inf
x∈M

1

|κ|max(x)
, (3.1)

where |κ|max(x) denotes the maximal absolute value of the normal curvatures at x ∈ M .

Definition 3.1 (normal graph). A compact polyhedral surface Mh is a normal graph

over a compact smooth surface M if it is strictly within the reach of M and the map Ψ :
Mh → M which takes every point on Mh to its closest point on M is a homeomorphism.

The inverse of this map, Φ = Ψ−1 : M → Mh, satisfies

distE3(Φ(x),M) = ‖Φ(x) − x‖E3 ,

see Figure 3. Φ is called the shortest distance map.

Definition 3.2 (normal convergence). We say that a sequence of polyhedra {Mn}, with

normal fields Nn, converges normally to a smooth surface M , with normal field N , if each

Mn is a normal graph over M and the sequence of normal fields converges in L∞(M)
under the shortest distance maps,

‖Nn ◦ Φn − N‖∞ → 0 .

The sequence is said to converge totally normally if it converges normally and the Haus-

dorff distances dH(Mn,M) tend to zero as well.

3.2. Measuring metric distortion

We use the shortest distance map to pull back the length metric on the polyhedral surface

Mh to a metric gh defined on the smooth surface M . This amounts to thinking of M
as being equipped with two metric structures – the smooth Riemannian metric g and the
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polyhedral metric gh. The metric distortion tensor A measures the distortion between g
and gh. It is defined by

g(A(X), Y ) := gh(X,Y ) := gE3( dΦ(X), dΦ(Y )) a.e. , (3.2)

where X and Y are smooth vector fields on M . The matrix field A is symmetric and

positive definite outside a measure zero set. The next theorem shows that A only depends

on the distance between M and Mh, the angle between their normals, and the shape

operator of M (for a proof see [15, 29]; see also Morvan and Thibert [19] for a similar

result).

Theorem 3.3 (metric distortion tensor splitting). Let Mh be a polyhedral surface with

normal field Nh. Assume Mh is a normal graph over an embedded smooth surface M
with normal field N . Then the metric distortion tensor satisfies

A = P ◦ Q−1 ◦ P a.e. , (3.3)

a decomposition into symmetric positive definite matrices P and Q which can pointwise

be diagonalized (possibly in different orthonormal frames) by

P =

(

1 − d · κ1 0
0 1 − d · κ2

)

(3.4)

Q =

(

〈N,Nh ◦ Φ〉2 0
0 1

)

. (3.5)

Here κ1 and κ2 denote the principal curvatures of the smooth manifold M , and d(x) is

the signed distance function, defined by Φ(x) = x + d(x) · N(x).

3.3. Convergence of Laplace–Beltrami operators

The domain H1
0(M) of the on M is the subspace of functions in H1(M) with zero bound-

ary condition; its range H−1(M) is the space of bounded linear functionals on H1
0(M).

Here, H1
0(M) will always be equipped with the norm

‖u‖2
H1

0
(M) =

∫

M

g(∇u,∇u) d vol .

Using the shortest distance map to pull back the Laplace–Beltrami operator on Mh to the

smooth surface M , we think of M as being equipped with two elliptic operators:

∆,∆h : H1
0(M) → H−1(M) . (3.6)

Let 〈·|·〉 denote the dual pairing between H−1(M) and H1
0(M). Then the weak definition

of these operators is given by

〈∆u|v〉 = −

∫

M

g(∇u,∇v) d vol (3.7)

〈∆hu|v〉 = −

∫

M

g(A−1∇u,∇v)(det A)1/2 d vol . (3.8)

Convergence of Laplace–Beltrami operators is understood in the operator norm of bound-

ed linear operators between the spaces H1
0(M) and H−1(M).
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Remark. The last formula is justified by the fact that the metric distortion tensor induces

the following transformations for gradients and volume forms:

d volh = (det A)1/2 d vol ,

∇h = A−1∇ .

For a proof of the next theorem, see [15, 29].

Theorem 3.4 (convergence of Laplacians). Let Mh ⊂ E
3 be an embedded compact

polyhedral surface which is a normal graph over a smooth surface M with corresponding

distortion tensor A. Define Ā := (detA)1/2A−1. Then

1

2
‖tr(Ā − Id)‖∞ ≤ ‖∆h − ∆‖op ≤ ‖Ā − Id‖∞ . (3.9)

Hence, if a sequence of polyhedral surfaces converges to M totally normally, then the

corresponding Laplace–Beltrami operators converge in norm.

From here on, in order to show convergence for the discrete cotan–Laplacian, one

proceeds similarly to Dziuk [10] who studies linear finite elements for interpolating poly-

hedra. For details about the extension to our case – approximating polyhedra – see [29].

3.4. Convergence of mean curvature

Analogously to the smooth case, we define the mean curvature vector as the result of

applying the Laplace–Beltrami operator to the embedding function of a surface. In the

polyhedral case this yields a functional (a distribution) rather than a function.

Definition 3.5 (mean curvature functional). Let ~IM : M → E
3 and ~IMh

: Mh → E
3

denote the embeddings of M and Mh, respectively, and let ~Ih = ~IMh
◦ Φ : M → E

3.

Then the mean curvature vectors are functionals on M defined by

~HM := ∆~IM ∈ (H−1(M))3 ,

~Hh := ∆h
~Ih ∈ (H−1(M))3 ,

defining one equation for each of the three components of these embeddings.

Lemma 3.6 (connection with cotangent formula). The mean curvature functional, when

restricted to the subspace spanned by nodal basis functions, can be expressed using the

cotangent formula:

〈 ~Hh|φp〉 =
1

2

∑

q∈link(p)

(cot αpq + cot βpq) · (q − p) . (3.10)

The mean curvature functional is R
3–valued. We need to say what we mean by the

norm of such a functional. Let ~F be a R
n–valued bounded linear operator on H1

0. We

define

‖~F‖H−1 = sup
0 6=u∈H1

0

‖〈~F |u〉‖Rn

‖u‖H1

0

,

where 〈·|·〉 denotes the dual pairing between H−1 and H1
0. The following result gives an

a priori error bound for the mean curvature functionals.
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Theorem 3.7 (convergence of mean curvature functionals). Let Mh be a normal graph

over a smooth surface M with associated shortest distance map Φ and metric distortion

tensor A. Then

‖ ~HM − ~Hh‖H−1 ≤
√

|M | (CA − 1 + CA‖Id − dΦ‖∞) , (3.11)

where CA = ‖(det A)1/2A−1‖∞, |M | is the total area of M , and ‖Id − dΦ‖∞ denotes

the essential supremum over the pointwise operator norm of the operator (Id− dΦ)(x) :
TxM → R

3. Hence, if a sequence of polyhedral surfaces converges to M totally nor-

mally, then the mean curvature functionals converge in norm.

Sketch of proof. Inequality (3.11) is a consequence of the triangle inequality applied to

(∆~IM − ∆h
~Ih) = (∆~IM − ∆h

~IM ) + (∆h
~IM − ∆h

~Ih) .

The convergence statement follows from an application of Theorem 3.3 to estimate the

two terms (CA − 1) and ‖Id − dΦ‖∞, respectively. �

A counterexample to the convergence of discrete mean curvature. The reason to care

about functions instead of functionals (distributions) is scaling. The mean curvature func-

tional scales differently from the (classical) mean curvature function: If a surface is uni-

formly scaled by a factor λ, then the mean curvature functional also scales with λ, whereas

the mean curvature function scales with 1/λ.

Definition 3.8 (discrete mean curvature vector). The discrete mean curvature vector

is the unique R
3–valued piecewise linear function ~Hdis ∈ (Sh,0)

3, corresponding to the

mean curvature functional ~Hh, evaluated on Sh,0. It is defined by

( ~Hdis, uh)L2(Mh) = 〈 ~Hh|uh〉 ∀uh ∈ Sh,0 , (3.12)

where (·, ·)L2(Mh) denotes the L2 inner product on Mh, and 〈 ~Hh|uh〉 denotes the evalua-

tion of the mean curvature functional on uh.

Note that it is possible to associate a discrete function to the mean curvature func-

tional only because the dimension of Sh,0 is finite. There is no infinite-dimensional ana-

logue of this construction. The mean curvature function can be computed explicitly:

~Hdis =
∑

p,q∈Mh\∂Mh

〈 ~Hh|φp〉M
pqφq , (3.13)

where Mpq denotes the inverse of the mass matrix, Mpq, which is given by

Mpq =

∫

Mh

φpφq d volh .

Remark. Instead of using the full mass matrix, it is common to use a lumped version (such

as obtained by forming a diagonal matrix with entries equal to the row sums of M).

Counterexample. This example shows that in general discrete mean curvature fails to

converge in L2 (and in fact, in any pointwise sense). Let M be a smooth cylinder of

height 2π and radius 1. We construct a sequence {Mn} of polyhedral cylinders whose
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FIGURE 4. Discrete mean curvature does not converge in L2 for a 4–8
tessellation of a regular quad-grid, because the ratio between the areas

of the stencils of p4 and p8 does not converge to 1.

vertices lie on M and which converges to M totally normally, but for which the mean

curvature functions fail to converge. Let M be parameterized as follows:

x = cos u, y = sin u, z = v .

Let the vertices of Mn be given by

u =
iπ

n
i = 0, ..., 2n − 1

v =

{

2j sin π
2n j = 0, ..., 2n − 1

2π j = 2n

This corresponds (up to the uppermost layer) to folding along vertical lines a regular

planar quad-grid of edge length hn = 2 sin(π/2n), see Figure 4. In other words, all faces

of Mn are square (except for the uppermost layer). It will now depend on the tessellation

pattern (i.e., the choice of diagonals) of this quad-grid whether there is L2–convergence of

the mean curvature function or not. Indeed, consider the regular 4–8 tessellation scheme

depicted in Figure 4. There are two kinds of vertices: those of valence 4 and those of

valence 8. Call them p4 and p8, respectively, and let φp4
and φp8

denote the corresponding

nodal basis functions. By the symmetry of the problem there exist constants an, bn ∈ R

such that

~Hdis,n =
∑

p4

an · φp4
· ∂r +

∑

p8

bn · φp8
· ∂r + boundary contributions ,

where ∂r is the smooth cylinder’s outer normal and the contributions from the boundary

include all vertices one layer away from the upper boundary. Then, as the edge lengths hn

tend zero, it turns out that bn → 0 and an → −3. Hence, ~Hdis,n is a family of continuous

functions oscillating between an ≈ −3 (at the vertices of valence 4) and bn ≈ 0 (at

the vertices of valence 8) with ever growing frequencies. Such a family, although it does

converge in H−1(M), cannot converge in L2(M).
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3.5. A general convergence result

We have chosen to elaborate on the concept of mean curvature here. In order to complete

the picture, we conclude this overview with a summary of related results. For a more

complete story, see [15, 29].

Theorem 3.9 (geometric conditions for normal convergence). Let {Mn} be a sequence

of compact polyhedral surfaces which are normal graphs over a compact smooth surface

M , converging to M in Hausdorff distance. Then the following conditions are equivalent:

1. convergence of normals,

2. convergence of metric tensors (An → Id),

3. convergence of area measure,

4. convergence of Laplace–Beltrami operators in norm.

The fact that totally normal convergence implies convergence of metric tensors has

several other consequences: convergence of shortest geodesics on Mn to geodesics on M ,

convergence of solutions to the Dirichlet problem, convergence of Hodge decompositions

(for appropriate discrete notions of gradient, curl, and divergence), and convergence of

the spectrum of the Laplacian. For details we refer to [29].
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