
Eurographics Symposium on Geometry Processing 2012
Eitan Grinspun and Niloy Mitra
(Guest Editors)

Volume 31 (2012), Number 5

Flexible Developable Surfaces

Justin Solomon1 Etienne Vouga2 Max Wardetzky3 Eitan Grinspun2

1Department of Computer Science, Stanford University, USA
2 Computer Science Department, Columbia University, USA

3 Institute for Numerical and Applied Mathematics, Univerity of Göttingen, Germany

Abstract
We introduce a discrete paradigm for developable surface modeling. Unlike previous attempts at interactive de-
velopable surface modeling, our system is able to enforce exact developability at every step, ensuring that users
do not inadvertently suggest configurations that leave the manifold of admissible folds of a flat two-dimensional
sheet. With methods for navigation of this highly nonlinear constraint space in place, we show how to formulate
a discrete mean curvature bending energy measuring how far a given discrete developable surface is from being
flat. This energy enables relaxation of user-generated configurations and suggests a straightforward subdivision
scheme that produces admissible smoothed versions of bent regions of our discrete developable surfaces.

1. Introduction

If a surface can be bent to lie flat on the plane without tearing
or stretching, it is said to be developable. The study of de-
velopable surfaces goes hand in hand with the study of iso-
metric deformations, since any developable surface can be
created by isometrically bending a flat sheet. This construc-
tive view explains why many manufactured objects, such
as those made of sheet metal, paper, cardboard, and ply-
wood, are made by attaching together developable pieces.
In general, such constructions are well-approximated by de-
velopable surfaces that contain smooth regions possibly in-
terrupted by sharp creases.

Deformation, discretization, and locking To design a de-
velopable surface easily, it can be helpful to deform an ex-
isting developable surface smoothly and isometrically, trac-
ing a continuous trajectory strictly within the space of devel-
opable surfaces.

One of the critical challenges to such smooth isometric
deformation is the locking induced by discretization of the
smooth surface. Locking takes on many forms, and there are
numerous definitions and discussions (see [CB98] and refer-
ences therein). For our purposes, locking can be understood
as the failure of a discretization to navigate the full space of
isometric deformations of a developable surface smoothly.
Discretizations that lock are typically forced to leave the ad-
missible space of developable configurations, even for sim-
ple or common deformations. For example, a square sheet

Figure 1: Developable pinwheel modeled in our system
(left). Each developable piece (middle), defined by its pla-
nar fold configuration (right), was modeled by prescribing
the positions of the three corner vertices in three-space, con-
straining the left border to remain flat (red ruling), and al-
lowing the developable surface to relax to the curved (green
rulings) configuration that minimizes the nonlinear elastic
thin plate energy.

discretized by an irregular triangle mesh consisting of con-
forming, planar triangles in general cannot be bent (at all)
without stretching some triangles.

Desiderata As such, when the goal is to deform a surface
smoothly and isometrically, the choice of discretization is
paramount. We seek discretizations that are

• geometrically exact, in the sense that the discrete geome-
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try is itself developable (without altering the definition of
developability);
• versatile, in the sense that it can approximate any devel-

opable surface;
• flexible, in the sense that it is possible to navigate from

any configuration to any other in the space of all valid
discretizations smoothly, without leaving the space; and
• as simple as possible, so that efficient and robust numerics

are easier to implement.

In focusing on geometrically-exact discretizations, we are
in a sense seeking to build a discrete theory of developabil-
ity from the ground up, rather than trying to approximate
developable behavior on existing non-developable struc-
tures. In particular, we consider discrete developable sur-
faces represented by a planar domain decorated with em-
bedded fold lines, bend angles, and rulings, similar in spirit
to [KGK94, PB07]. We believe that this is a promising av-
enue to locking-free discretization of smoothly deforming
developable surfaces, striking the right balance between sim-
plicity and efficiency of numerical treatment, exact geomet-
ric flexibility, and versatility.

Mechanics After a suitable discretization is chosen, a natu-
ral step is to endow the discrete representation with an elas-
tic potential; such potentials serve as intuitive metrics in the
context of interactive modeling or as natural objective func-
tions for offline optimization.

Physical realizations of developable surfaces are typi-
cally governed by the thin plate equations [CB98, AP09],
which account for both the stretching and the bending of
a thin (but finitely thick) sheet of elastic material. For suf-
ficiently thin plates and appropriate boundary/loading con-
ditions, the plate may be treated as inextensible, its shape
governed by the stored bending energy and boundary condi-
tions [CB98,AP09]. Identifying geometrically-exact flexible
discretizations for developable surfaces and formulating a
consistent discrete thin plate bending energy is an important
step toward addressing the open problem of locking in nu-
merical treatment of the thin plate equations [CB98, EB08].

Overview After surveying related work (§2), we recall the
smooth theory of developable surfaces (§3) and develop a
corresponding discrete theory (§4), which we endow with a
consistent discrete bending energy (§5). We describe a nu-
merical implementation in the context of deformation and
interactive editing (§6), in which the surface can be ma-
nipulated, pinned, and elastically relaxed. While our rep-
resentation is always discrete, subdivision (§6.2) in tan-
dem with elastic relaxation allow arbitrarily fine approxima-
tion of smoothly curved developable surfaces with smoothly
curved sharp creases.

2. Related Work

Previous works have considered developable surfaces as a
geometric representations for design of plush toys [JKS05],

ship hulls [PS07], clothing [KG90,EB08,TC09,CT10], fold-
ing maps in augmented reality [MS11], papercraft [Huf76,
KGK94, MS04, STL06], and origami [BGW06, Tac09b,
Tac09a, Cha09, SG11, Tac10a, IT10, Tac10b, Tac11, WC11].

Computational treatments of developable surfaces typ-
ically focus on synthesis, approximation, or deformation.
The first goal seeks to synthesize a developable surface
satisfying prescribed conditions, such as a given bound-
ary contour [Fre02, Fre04, DJW∗06, RSW∗07], pair of
opposing boundary curves [WF88, CWT08], prescribed
geodesic [ZW08], or Gaussian image [Par02].

The second goal is to approximate given geometric data,
such as a scattered point clouds [CLL∗99, Pet04, PB07,
TC09, MS11], sets of approximating planes [PW99], or
a nearby non-developable surfaces; the latter may require
segmenting the input surface into patches [Wan04, JKS05,
STL06,Wan08,SKKO02] or strips [MS04,LLH09,PSB∗08]
and treating the case of curved creases [KFC∗08].

The third goal is to deform a given developable
surface, for example by following the deformation of
its contour [RCHT11] or by constrained energy relax-
ation [KGK94,BGW06,LTJ07,EB08,CT10]. One of the crit-
ical challenges to smooth deformation is the locking induced
by discretization of the smooth surface. The success of a dis-
cretization in problems of synthesis or approximation is in
general not indicative of success in smooth isometric defor-
mation.

Discretization of developable surfaces may be inexact,
as in the case of quasi-developables [JKS05, PS07, Wan08,
TC09] or non-conforming meshes [EB08], or exact, in the
sense that the discrete representation is piecewise smooth
and developable in the usual sense. The latter category in-
cludes reduced (or “minimal”) discretizations based on cone
splines [LP98, CLL∗99], generalized cones [Red89, SF96],
curves in dual projective three-space [PW99], embedded
geodesics [Pet04, BW07, ZW08], and characteristic points
based on singularity theory [KG90]. Some theoretical work
also has been carried out characterizing properties of exact
folded developables constructed by gluing together planar
polygonal pieces [BI08].

Exact discretizations can also be developed by augment-
ing more general discretizations with developability con-
straints, an approach considered for Bézier and B-spline sur-
faces [CC90, FB93, Pot95, CS02, Aum03, Aum04, FJ07], tri-
angle meshes [WF88, Fre02, Fre04, Wan04, MS04, BGW06,
RSW∗07, LTJ07, LLH09, CT10, RCHT11, SKKO02], and
planar quadrilateral meshes [WF88,LPW∗06,KFC∗08]. The
majority of these discretizations have been demonstrated
successfully in the context of synthesis and approximation,
but their performance in problems of smooth deformation
remains less understood.

Our investigation has been motivated by recent works
on interactive design of developables and origami [SF96,
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BGW06, BW07, TI08, Ida08, IT10, Tac09b, Tac09a, Cha09,
Tac10a,Tac11,WC11]. Indeed, our decisions concerning ge-
ometric discretization, numerical implementation, and inter-
action metaphors seek to prioritize the numerical robustness,
economy of computation, and versatility required for inter-
active design.

3. Smooth Developable Surfaces

Developable surfaces have a variety of fascinating proper-
ties, see e.g. [Car76] for a general discussion; we sketch
those properties here that we require in the discrete setting
later.

By definition, developable surfaces are characterized by
having vanishing Gauß curvature, that is, they are locally
isometric to the Euclidean plane. Any smooth developable
surface Σ locally is comprised of a one-parameter family of
straight line segments called rulings that do not cross and run
across the surface. Likewise, there exists a one-parameter
family of smooth curves on Σ that run orthogonally to the
rulings. Any curve γ in this family has the property that the
orthonormal frame formed by (i) the unit tangent of γ, (ii) the
(properly oriented) unit ruling direction, and (iii) the surface
normal is a so-called natural (or Bishop) frame [Bis75]. This
observation can be reversed: Consider a smooth space curve
γ(s) equipped with its orthonormal natural frame (T,U,V ).
Choosing ε > 0 small enough yields a developable surface

Σ(s, t) := γ(s)+ tU(s)

for all t ∈ (−ε,ε), with rulings formed by U and surface
normals along γ formed by V .

In this case, the curvature of the resulting surface conve-
niently can be described in terms of the framed curve. Since
it is perpendicular to the flat rulings, γ runs along a prin-
cipal curvature line with normal curvature equal to T ′ ·V ;
this normal curvature is in turn equal to half the mean cur-
vature H = κ1 +κ2 of Σ since the other principal curvature
must be exactly zero. Likewise, for fixed t consider the curve
γt(s) = Σ(s, t). Re-parameterizing γt to arc-length, there is
a natural frame for γt from which one can infer the mean
curvature at Σ(s, t) from the curvature of γt (s). Although we
do not explicitly derive the requisite expressions here, this
discussion serves as a motivation for the case of discrete de-
velopable surfaces, where (discrete) mean curvatures can be
inferred from polygonal analogs of γ.

4. Discrete Developable Surfaces

Informally, we think of discrete developable surfaces as
pieces of origami that can be folded from a sheet of paper
without tearing or gluing. While such a discrete structure is
piecewise flat, we do not view our surface as a collection of
planar segments bordered by sharp folds. Instead, in many
practical situations, external forces and other spatial con-
straints naturally lead to curved configurations that should

(a) (b)

Figure 2: (a) A simple developable surface with two-
dimensional configuration (b).

be represented in our setup. We account for this situation
by approximating smoothly-curved developable pieces us-
ing discrete developable pieces that consist of a finite num-
ber of rulings.

Formally, in our setup, a discrete developable surface is
comprised of the following parts:

• A polygonal domain P⊂ R2 with corners p1, . . . , pm. We
assume that the edges of P do not self-intersect. For nota-
tional convenience, we let P include its own boundary.

• A collection of vertices V = {v1, . . . ,vn} ⊂ P, which can
reside both on ∂P and in int P.

• A collection of folds F ⊆ V ×V representing line seg-
ments contained within P parameterized by their starting
and ending vertices.

• A subset R⊆ F of rulings representing the boundaries of
smoothly-bent pieces.

• A folding angle Θ : F → R associated with each fold; for
a given fold f = (vi,v j)∈ F we denote its associated fold-
ing angle as θ f .

Figure 2 labels all these components on a simple two-
dimensional configuration.

Degrees of freedom (DOFs) For a given domain P, the
configuration space of discrete developable surfaces is pa-
rameterized, modulo rigid motion, by the graph topology in-
duced by F , the positions of the vertices V , and the folding
angles Θ of the fold lines. We note that this set of DOFs
is distinguished from those used in the origami literature
(see [Tac09b] and references therein) in that we consider
variable, rather than fixed, vertex positions.

To this essential set of variables, we add variables defining
a set of rigid Euclidean transformations E mapping each face
of P to its realization in R3. While these additional variables
do not add expressive power to the discretization, they sim-
plify the implementation of positional constraints and user
manipulations in three-space.

Boundary conditions and constraints Fold lines and pre-
scribed bending angles Θ are given as user input or through
the subdivision schemes described in §6.2. A challenge is
to ensure developability, which corresponds to a number of
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(a) (b)

Figure 3: Polygons satisfying (a) and violating (b) the inte-
rior angle constraint.

constraints on V , F , and Θ that must be obeyed by admissi-
ble configurations:

4.1. Constraints

A number of constraints are needed to ensure that every con-
figuration corresponds to a discrete developable surface with
a realizable embedding in R3. These constraints can be di-
vided into three groups:

• Geometric constraints on the vertices and edges of P:
edges must intersect only at vertices, and vertices must re-
main within or on the boundary of the domain ∂P. (§4.2)
• Compatibility constraints imposed by 3D realizability:

around every interior vertex, gluing together adjacent
faces at their common edge with that edge’s folding an-
gle must yield a surface that locally “closes up.” More-
over, the Euclidean transformations E must be compati-
ble with the other degrees of freedom, so that neighboring
faces meet seamlessly in 3D and at the correct folding an-
gles. (§4.3)
• User-specified constraints on positions in 3D, positions of

rulings, or folding angles. (§4.4)

4.2. Graph Constraints

On a developable surface, rulings intersect only at cone
points; we thus require discrete folds to intersect each other
only at (interior or boundary) vertices. Preventing the user
from drawing folds that violate this constraint is straight-
forward, but preventing such intersections from occurring
during optimization is much more difficult. Although non-
intersection could be enforced with inequality constraints for
each pair of folds, this approach requires up to |F|2 nonlinear
constraints for |F| folds and quickly becomes prohibitively
expensive.

We instead make two observations: first, we may assume,
without loss of expressiveness, that the polygonal faces
formed by cutting P along fold segments are convex. The
folding angles of any folds around a concave interior ver-
tex must be zero (it is impossible to fold along such lines
without tearing the paper), so the surface is locally flat at
that point. Second, given a graph in the plane with straight
edges, whose faces are all convex and whose edges do not

(a)

(b)

Figure 4: (a) Assembling a developable surface; (b) multiple
sets of compatible folding angles are possible with a fixed set
of points in V and ruling topology.

intersect, it is impossible to slide vertices around smoothly
in a way that introduces an edge-edge intersection without
causing one of the faces to become non-convex.

We thus achieve non-intersection of edges by instead en-
forcing the simpler condition that the turning angle between
consecutive folds when traveling around each face of P lies
in [0,π]. For polygons of winding number 1, this constraint
is equivalent to convexity of the polygon. Polygons of higher
winding number do not arise in practice, since it is impos-
sible to arrive at such a confguration without violating the
turning angle constraint of a neighboring face. See Figure 3
for examples of polygons satisfying and violating this con-
straint.

Since the boundary of a piece of paper does not grow
or shrink during folding, we also cannot allow vertices on
the boundary ∂P of the domain to leave ∂P. We enforce this
condition by pinning the domain corners pi, and restricting
all other boundary vertices to slide along the lines between
these corners.

4.3. Compatibility Constraints

As long as folds do not intersect or meet (and thus all ver-
tices are on the boundary), any configuration is admissible.
For interior vertices, however, only some choices of folding
angles for the adjacent fold lines yield a locally realizable
surface.

We can think of realizing a discrete developable surface
as cutting P along its folds to form pieces (faces of P) to be
assembled in R3 by gluing them together one at a time using
angles in Θ, as illustrated in Figure 4(a). Often multiple such
assemblies are possible with the same set of pieces, as in Fig-
ure 4(b). We must ensure that the pieces can be assembled
in a way that does not tear the surface like the example in

c© 2012 The Author(s)
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Figure 5: Prescribing the black folding angles in a simple
crossed fold configuration forces a tear at the red angle,
which should represent a single ruling.

(a) (b)

Figure 6: (a) Notation for interior vertex compatibility; (b)
construction for compatibility constraint.

Figure 5. Unlike previous work on developable surface ap-
proximation using meshes, this constraint does not have to
do with the requirement for vanishing Gaussian curvature, a
property that follows automatically from our representation
via rulings embedded on a flat sheet.

Consider the interior vertex v ∈ V shown in Figure 6(a);
without loss of generality we can assume that v is at position
(0,0). We draw unit vectors f̂1, . . . , f̂k in the directions of the
outgoing folds f1, . . . , fk from v in clockwise order. Embed
P in the xy plane of R3 and define Mi to be the rotation about
f̂i by angle θi.

Suppose we cut outward from v along f̂k. We hold the
piece of P counterclockwise from fk flat on the xy plane and
fold along f̂1 by angle θ1, then along f̂2 by angle θ2, and so
on as in Figure 6(b). The product M1M2 · · ·Mi represents the
transformation from points in the segment clockwise from f1
to fi in the xy plane to its position in the three-dimensional
configuration after i folds. Completing the loop, the product
M1M2 · · ·Mk should put the segment clockwise from f1 back
in the xy plane, since we have completed the folding process
and then rotated around the final fold using Mk. This process
yields the compatibility condition M1M2 · · ·Mk = I3×3.

We should mention here that constraints in this form are
redundant. In particular, the product ∏i Mi is guaranteed to
be a rotation regardless of whether the configuration is com-
patible. It is thus sufficient to constrain only the three upper-
off-diagonal entries to be zero. Strictly speaking, however,
this constraint is weaker since it does not distinguish be-

Figure 7: Notation for the mean curvature bending energy.

tween the identity and 180◦ rotations about the axes, but this
dinstinction is not important in practice for a surface that
starts in a realizable configuration and deforms smoothly.

It is possible to construct a three-dimensional developable
surface from any two-dimensional configuration satisfying
all of the above constraints. To make it easier to realize the
surface as it is being edited and to enforce user-supplied con-
straints on the 3D positions of parts of the surface, we in-
troduce as auxiliary degrees of freedom Euclidean transfor-
mations E mapping faces to their positions and orientations
in R3. We then require additional compatibility conditions
ensuring that these transformations do indeed reconstruct a
seamless surface.

To guarantee that the transformations E realize the devel-
opable surface, it is sufficient to build a minimum spanning
tree of the dual graph of P and to enforce that two faces con-
nected by an edge in the spanning tree abut in R3 with the
correct folding angle; that other pairs of adjacent faces meet
up correctly is already enforced by the interior vertex com-
patibility constraints. Thus, for each edge of our spanning
tree we simply add constraints that endpoints of the adjacent
pieces meet up and that the resulting fold is at the angle from
Θ; the latter can be accomplished as a constraint on tan θ f/2

analogous to that in [BWR∗08].

4.4. Additional Constraints

We allow the user to specify additional constraints on the
configuration: vertex positions in P, folding angles, and the
3D positions of the vertices on the realization can all be
pinned.

5. Mean Curvature Bending Energy

While the constructions in Section 4 can be used to obtain
admissible developable surfaces, in the end we wish to ap-
proximate smooth surfaces rather than ones obtained solely
using oragami constructions. To this end, we introduce a
squared mean curvature bending energy measuring a sur-
face’s deviation from flatness.

As in the smooth setting, we may infer curvature and thus

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



J. Solomon, E. Vouga, M. Wardetzky, & E. Grinspun / Flexible Developable Surfaces

bending energies using curves that run perpendicular to rul-
ings. To this end, consider three rulings r1,r2,r3 that border
two neighboring planar pieces as in Figure 7. Assume the
ends of r2 are given by vertices v1 and v2. Then, for every
point v = (1− t)v1 + tv2 on r2, there exists a piecewise lin-
ear curve γt , comprised of three segments that are orthogonal
to the rulings, whose vertices lie along the angle bisectors
between r1,r2 and r2,r3. The bending energy induced by a
folding angle θr2 about r2 is associated with the part of the
surface flanking either side of r2 through the vertices of γt .
Denote these vertices as γ

1
t and γ

2
t .

The curve γt is a discrete principal curve of the surface
∀t ∈ [0,1], because it is perpendicular to the zero-curvature
ruling direction. Thus, we can regard θ as the mean curva-
ture of our discrete developable integrated along the segment
from γ

1
t to γ

2
t . In particular, defining s(t) = ‖γ2

t − γ
1
t ‖ we

write the discrete mean curvature of the surface at v as:

H(t) =
θr2

s(t)
(1)

Of course, H(t) is rarely constant as a function of t, repre-
senting the fact that the same folding angle θr2 gives differ-
ent mean curvatures as the rulings become more and more
spread out.

The curve γt can leave the boundary of the sheet. In this
case we still take s to be the length of the segment of γt in-
tersecting r2 extended beyond the boundary of P; this way
curvature does not shrink simply because P was cut to have
a particular shape. Take l(t) to be the length of γt between
vertices adjacent to r2 intersected with P; obviously we al-
ways have l(t)≤ s(t).

Since our rulings and the border of the planar sheet are
both comprised of line segments, s(t) and l(t) are piece-
wise linear functions of t. Thus, we can identify a sequence
t0 = 0, t1, . . . , tk = 1 such that s(t) and l(t) are linear between
adjacent values ti; denote si = s(ti) and li = l(ti). We di-
vide the computation of the bending energy associated with
r2 into computation of bending energies for each segment
[ti, ti+1).

Taking into account this piecewise linear structure, for a
given segment i, we can write our bending energy using the
following integral:

Ei = d∆t

∫ 1

0

θ
2
r2((1−u)li +uli+1)

((1−u)si +usi+1)2 du

=
d∆tθ

2
r2

[
∆s(lisi+1− li+1si)−∆lsisi+1 log si+1

si
)
]

sisi+1∆2
s

(2)

where d = ‖v2− v1‖ and ∆χ = χi+1−χi for any variable χ;
assume si ≤ si+1 and otherwise swap accordingly. The total
mean curvature bending energy associated with r2 is simply
E = ∑

k−1
i=1 Ei.

While the terms of (2) are fairly complex, they can be

computed in closed form from the local geometry of the dis-
crete developable. Our implementation computes the deriva-
tives using the open source automatic differentiation library
FADBAD++.

5.1. Dealing with Singularities

General developable surfaces may contain singular points of
unbounded mean curvature. While the mathematical objects
may contain such points, their physical counterparts cannot.
Evidence is found in the localized permanent scars formed
when a sheet of paper is crumpled [Huf76, BP97, CM05,
AP09]. Near the singular points, the physical sheet must
stretch to remain smooth, and this strain causes permanent
damage.

The thin plate elastic potential—the sum of the squared
mean curvature bending energy and a membrane stretching
energy—is bounded only for smooth surfaces [AP09]. Sur-
faces with singular points are outside the space of minimiz-
ers of this potential. However, admissible smooth surfaces
are always nearby, and in particular the discrepancy is ob-
served only in an arbitrarily small neighborhood of the sin-
gular points, where the squared mean curvature elastic po-
tential becomes unbounded. This phenomenon is most clear
in the geometry of a circular cone, whose rulings all emanate
from a point; approaching the tip of the cone, the radius of
the circle vanishes, as does the radius of curvature.

Because the discrepancy arises in an arbitrarily small
neighborhood, it does not affect the solution in a macro-
scopic sense. Our implementation implicitly cuts a small
hole around each singularity when evaluating the energy, by
setting t0 = ε > 0 and correspondingly interpolating s0 and
l0.

Some physical experimentation on real-world devel-
opable materials like paper and sheet metal remains to be
done to verify if this hole-cutting approximation aligns with
the infinitesimal stretching that occurs in these materials at
singular points; we have yet to identify a reasonable test case
in which it yields nonphysical behavior. Furthermore, the
form of (2) indicates that our approximation will at least not
have strong dependence on the choice of ε, since the diver-
gence of E0 occurs like O(logε) as s0 = ε→ 0.

6. Discrete Developable Surface Editing

We have implemented an interactive tool for exploring the
manifold of discrete developable surfaces. The interface dis-
plays views of the developable surface both in its two-
dimensional configuration on P as well as the final three-
dimensional shape. The user manually can introduce folds
or rulings by drawing segments or snapping to the endpoints
of existing folds; additional rulings can be introduced by the
subdivision techniques described in Section 6.2. Constraints
can be added by pinning vertices in the folded or unfolded
configurations, fixing folding angles, and so on.

c© 2012 The Author(s)
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As the user changes the configuration, his or her mo-
tions are projected back onto the manifold of acceptable
configurations. Introduction of folds violating basic topo-
logical and geometric constraints explicitly is prohibited.
More interestingly, when folding angles or vertex positions
are changed by the user, an iterative primal-dual interior
point method with moderately tight error tolerances is used
to find a nearby admissible configuration. In particular, the
tool attempts to minimize Econ f ig(V,Θ,E) = ∑i ‖vi−v∗i ‖2+

α∑ j(θ j−θ
∗
j )

2, where ∗ denotes the configuration after ap-
plying the user’s desired edits, subject to the constraints in
§4. Since v∗,θ∗ are nearly admissible after incremental ed-
its, we find there to be minimal dependence on α and choose
α = 1. Since these projections occur for each small user-
introduced change, few iterations are needed to return to a
compatible configuration starting from vi = v∗i ,θ j = θ

∗
j ∀i, j.

Thus, our system can deal with moderately-sized ruling
topologies including interior vertices interactively.

6.1. Curvature-Based Relaxation

We can substitute the mean curvature bending energy (2)
for the proximity measure from §6 to formulate an energy
minimization problem for relaxing rulings on discrete devel-
opable surfaces. Without additional constraints, this mini-
mization simply will flatten the surface, since the lowest pos-
sible bending energy E = 0 is obtained when all fold angles
are exactly zero. By pinning points in the folded configura-
tion or by fixing even just one folding angle, however, the
solution of this variational problem becomes far from triv-
ial, attempting to smooth out the surface while moving only
in the space of admissible developables.

We allow the user to specify where on the developable
sheet the bending energy should be evaluated, distinguish-
ing between “folds” and “rulings,” the latter only appear-
ing on smooth regions. Not all regions of the surface can be
marked as smoothly folded, such as interior polygons within
fold segments, which are provably flat; the user is restricted
to smoothing those sections with or without cone singular-
ities for which the bending energy can be evaluated. While
constraints can be added to localize the relaxation to a single
portion of the developable surface, often times higher de-
grees of flexibility can be obtained by allowing more parts
to move.

Figure 8 shows an example of curvature-based relaxation
applied to a sharply-folded surface after applying the subdi-
vision technique described below. As expected, this process
smooths sharp corners while obeying user-specified con-
straints, providing a simple way to obtain a smooth devel-
opable from a rough configuration.

6.2. Subdivision

We provide a subdivision operator for refining smoothly-
bent regions, similar in spirit to Liu et al. [LPW∗06]. We

(a) (b) (c)

Figure 8: The rough user-input configuration (a) is subdi-
vided (b) to add rulings but preserve the geometry and then
relaxed (c) using the mean curvature bending energy.

Figure 9: Successive applications of our curved fold sub-
division scheme generates smoother and smoother interior
folds across the interior.

identify rulings whose folding angle is above some thresh-
old θ̂ and add rulings with 0◦ folding angles flanking them
on either side. We apply mean curvature relaxation to the
subdivided surface and repeat until all fold angles are below
θ̂. Combining subdivision, relaxation, and modeling yields
an effective workflow for dealing with discrete developable
surfaces, in which the user makes a rough model using few
rulings as an initial step and then subdivides and relaxes to
obtain the final surface, as exemplified in Figure 8.

We also provide a crease subdivision operator for ap-
proximating curved folds rather than curved pieces. In this
case, the user identifies chains of segments in F\R marked
as belonging to a discrete curved fold. We apply four-point
subdivision to the curve, yielding new vertices in the two-
dimensional configuration. These vertices are connected us-
ing additional rulings to boundary segments on their neigh-
boring faces, and the resulting configuration is relaxed. Two
iterations of curved fold subdivision are shown in Figure 9.
Note that the curved fold as well as the developable pieces
on either side become smoother with each application of our
operator.

6.3. Implementation Details

We use the IPOPT library for nonlinear optimization, with
the Watson Sparse Matrix Package for linear algebra and the
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Eigen library for matrix operations. On a 2.4 GHz Xeon pro-
cessor, we can deal with editing configurations with up to
50 rulings at interactive rates; better speeds likely could be
achieved by making use of parallel computations to evaluate
derivatives and project.

One aspect of our formulation that requires special atten-
tion during optimization is the enforcement of the fold-fold
interaction constraints from §4.2. These constraints always
guarantee admissibility but prevent folds from moving from
one edge of P to another. To circumvent this issue, during
optimization we simply check for fold vertices coincident
with vertices of P; if their energy gradient directs them into
a different segment of P, we make that localized change to
the topology of the surface and continue with optimization.
Such a method can be regarded as an “active set” technique
leaving constraints that folds do not leave far-away parts of
P in the inactive set.

Results Figures 1 and 10 show examples of discrete devel-
opable surfaces modeled using our tool. We find that we can
achieve a variety of smooth and oragami effects within our
system while navigating completely within the space of ad-
missible folded configurations of the domain P.

7. Discussion

We have proposed a flexible discrete structure for represent-
ing developable surfaces. Our structure acknowledges the
unique requirements of developability rather than attempt-
ing to approximate them on meshes or other less well-suited
domains. For this reason, we are able to allow users to ex-
plore the space of developables interactively. Additionally,
we provide a mean curvature bending energy on our flexible
discrete developables allowing for relaxation of parts of the
surface corresponding to smooth bends rather than folds; to-
gether with schemes for curved fold and ruling subdivision
we can obtain approximations of smooth developables with
straight and curved creases as well as point singularities.

Limitations While our system is among the first incorpo-
rating concepts from smooth and non-smooth geometry of
developable surfaces for design and editing, it remains sub-
ject to many computational challenges surrounding devel-
opability. Principally, projection to the manifold of admis-
sible configurations is a nonlinear operator solving a com-
plex constrained optimization problem. Our system remains
interactive at moderate scales by moving incrementally as
the user changes the configuration, providing initial condi-
tions for the optimization that already nearly satisfy the con-
straints; the objective discourages snapping to far-away con-
figurations by punishing large steps. Taking larger steps or
handling general non-convex domains would require a more
robust and efficient optimization. Additionally, there is po-
tential for getting caught in local minima.

Other limitations are related to the communication of the

stringent developability constraints to the user. Although
with practice it becomes straightforward to predict which
fold configurations will be flexible, the space of admissible
folds and linked degrees of freedom can be less than obvi-
ous while inspecting the unfolded and folded configurations.
An indicator of the stiffness of each apparent degree of free-
dom would make constructions easier to understand with-
out experimentation. Similarly, soft constraints on degrees
of freedom like folding angles and vertex positions might
enable trade-offs between the user’s desired outcomes when
they are not exactly achievable while satisfying developabil-
ity; this feature would avoid instabilities that result when the
user specifies constraints that are inadmissible or stiff.

Extensions of the tool may improve its functionality and
the steps needed to model certain types of developables.
For instance, in some applications it is desirable to avoid
self-intersecting surfaces, and some additional work will
be required to incorporate such nonlocal constraints into
our optimization. Additionally, combining our subdivision
techniques with the bending energy-based optimization may
enable dynamic modification of ruling topologies to relax
sharp edges automatically. Other methods for inserting sin-
gularities also might help to model crumpled paper and other
highly-folded or buckled configurations with many interior
vertices. Finally, our current metaphor involving the inser-
tion and editing of folds and bends mimics physical model-
ing with a sheet of paper but may be tedious for large-scale
models; a user study observing developable modeling work-
flows may determine more scalable operations.

Future Work This exploratory work suggests the potential
for an assortment of follow-up research. Within applications
to modeling, a tuned implementation paired with a careful
choice of nonlinear solvers may make it possible to work
with higher numbers of interacting rulings; a related option
for achieving higher complexity would be to allow for gluing
of multiple developable patches to achieve isolated points or
curves of nonzero Gauß curvature. On the less mathematical
side, user studies ascertaining the best way to communicate
the highly nonlinear manifold of admissible developables to
a novice user may make our tool more intuitive.

Our work has potential application in a variety of disci-
plines. Developable surfaces appear in manufacturing and
other fields in which molding materials is more easily ac-
complished using bending rather than stretching. Relaxing
our model to allow for limited stretching at isolated singu-
larities may be sufficient for the simulation of cloth, paper,
and related materials; initial tests show that our mean cur-
vature energy can be used to generate animations of devel-
opable surfaces bending under different stresses. Such appli-
cations likely will be able to demonstrate unique phenom-
ena associated with developable surfaces at both coarse and
fine scales using our flexible structure, which does not suffer
from locking, stiffness, or other artificial issues created by
conventional discrete approximations of developability.
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Figure 10: Developable surfaces produced by the proposed method and their corresponding two-dimensional fold configura-
tion. Folds or vertices highlighted in red are aspects of the two-dimensional configuration fixed by the user before smoothing.
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