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Figure 1: Tracking enables artistic expression and physical simulation to work hand-in-hand, as demonstrated in our animation of a character’s
unfortunate event. We begin (left to right) with the artist’s animation, automatically generate a set of Petrov-Galerkin test functions (visualized
as colored patches), and then solve the constrained Lagrangian mechanics equations to flesh out wrinkles and folds.

Abstract

We combine the often opposing forces of artistic freedom and math-
ematical determinism to enrich a given animation or simulation
of a surface with physically based detail. We present a process
called tracking, which takes as input a rough animation or simula-
tion and enhances it with physically simulated detail. Building on
the foundation of constrained Lagrangian mechanics, we propose
weak-form constraints for tracking the input motion. This method
allows the artist to choose where to add details such as characteris-
tic wrinkles and folds of various thin shell materials and dynamical
effects of physical forces. We demonstrate multiple applications
ranging from enhancing an artist’s animated character to guiding a
simulated inanimate object.
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1 Introduction

Simulating thin, flexible materials often means giving up artistic
control, yet manually animating their fine folds and wrinkles is an
arduous task. How can we provide simultaneous artistic control and
physical realism for materials like cloth, leather, or metal?

We present a process called tracking, which begins with a rough
animation already set by the artist and uses physical simulation to
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add fine-scale details without deviating from the artist’s intentions.
The artist sets the scale of features to be left intact, and our solver
computes the equations of motion at the remaining finer scales.

Motivating scenarios Consider two
scenarios where tracking is important:
(a) fleshing out a rough preview of
a physical simulation and (b) adding
physical detail to an animated character.

Coarse-to-fine design cycle To ac-
celerate the simulation design process,
artists use large time steps and coarse
geometry to generate rapid previews
before committing resources to a full-
detail physical simulation (see Fig. 2).
When the technical director approves a
promising preview, one might consider
reusing the parameters of the preview
in a full-resolution simulation; unfor-
tunately, an ordinary simulator’s output
often does not resemble the preview. Our tracking solver, on the
other hand, guarantees a similarity between input and output while
adding physically simulated detail at fine scales.

Enriching animation with physics Our work takes one step to-
ward colocating animated and physical behavior (see Fig. 1). The
animation depicts a puppet-like character whose body consists of a
thin, flexible material governed by the laws of physics. In this sce-
nario, there is no distinct spatial or temporal boundary separating art
from physics. This must be contrasted with common instances of
disjoint couplings, e.g.: skeleton-driven simulation, simulated fur,
or cloth over an animated body (spatially disjoint); and animated
keyframes interpolated by physics-based optimization (temporally
disjoint). To the best of our knowledge, the spatial and temporal
colocation of artistic animation and thin shell physics has not been
an explicit goal of prior work in the simulation literature.

1.1 A tracking solution

The scenarios we target in this paper have two main characteristics.
On the one hand, we focus on materials governed by the so-called



Figure 2: Rapid simulation design using coarse previews. Fast simulations with a low-resolution mesh (left) enable the technical director
to quickly iterate and improve on the setup of a physical simulation. When design is over and final production begins, an attempt to reuse
the setup with higher-resolution mesh (middle) vividly justifies the usual disclaimer that “past performance is no guarantee of future results.”
Tracking (right) ensures that the output performs as “predicted” by the preview—more precisely, as prescribed by the coarse input motion.

thin shell equations: thin shells are flexible surfaces that evolve
in time via stretching and bending modes. On the other hand, we
assume a given rough input motion—the guide trajectory, which
our tracking solver enhances with missing material-specific phys-
ical detail1. The material-dependent physical detail of thin shells
expresses itself in characteristic folds, wrinkles, and creases—time-
evolving geometry that is exceedingly tedious to model manually.
Because these details are straightforward to simulate with mathe-
matical models, thin shell problems present an ideal playground to
explore the idea of tracking. Since thin shells wrinkle and fold at
multiple spatial and temporal scales, we must address the question
of which physical scales to introduce over the given guide trajec-
tory; in general, the answer to this question may vary over space
and time. We provide the artist with several intuitive controls to de-
scribe the coarseness of the input trajectory and to set up the space
of permissible physical details.

Method-in-brief We propose a simple framework for tracking
solvers, or TRACKS, which enhances a given guide trajectory with
physically simulated detail. The framework consists of:

1. establishing a correspondence between guide (input) and
tracked (output) shapes (see §4.1),

2. creating weak-form averaged constraints using Petrov-
Galerkin test functions (see §3.1 and §4.2), and

3. solving the Constrained Lagrangian Mechanics equations to
add physical detail while enforcing the matching constraints
(see §3.2 and §4.3).

The key feature that distinguishes our method from previous work
lies in our use of the weak form formulation to create constraints
that force the guide and tracked trajectories to match in an overall
or averaged sense. To facilitate the creation of the required corre-
spondence, we also provide a novel extension to Lloyd’s algorithm
that automates the process. To the best of our knowledge, our solver
is the first to flesh out a given surface animation with simulated dy-
namic detail, in a single pass, with artistic control over the scale of
introduced details. However, our work builds on a large body of
preceding contributions, which we briefly survey below.

2 Related work

The roots of our work trace back to seminal papers by Terzopou-
los et al. [1987; 1988] on physical simulation of deformable mod-

1Here we use the term trajectory as the time-evolving shape and position

of the surface—as opposed to the path of its center of mass.

els, Platt and Barr [1988] on constrained Lagrangian mechan-
ics, and Witkin and Kass [1988] on spacetime constraints. In
the subsequent two decades, numerous works developed meth-
ods for guiding the course of a physical simulation. The direct-
ing of fluid simulations was considered by McNamara [2004],
Fattal [2004], Rasmussen [2004], Shi [2005], Angelidis [2006],
Thürey [2006], and their respective co-workers. Other re-
search focused on controlling the movement of elastic solids;
see, e.g., [Smith et al. 2001; Capell et al. 2002; Capell et al. 2005;
Kondo et al. 2005; Sifakis et al. 2005].

In contrast, work on directing plate and shell dynamics is compar-
atively scarce. Cutler et al. [2005] and Bridson et al. [2003] pre-
sented techniques for prescribing wrinkles on worn garments. Re-
cently, Wojtan et al. [2006] applied the adjoint method to a cloth
particle system; their work builds on ideas of control using space-
time constraints:

Control using multiple-pass and single-pass methods The
spacetime constraints paradigm [Witkin and Kass 1988] asks for
a trajectory that minimizes the work required to satisfy user-
provided keyframes. Methods built on this paradigm can pro-
duce convincing motion based on very sparse data (a few con-
straints). The requisite solver—typically a form of multiple-
shooting [Witkin and Kass 1988; Popović et al. 2003] or gradient-
based optimization [McNamara et al. 2004]—can be computation-
ally expensive: each iteration costs on the order of one simulation,
and the number of iterations grows with the size of the spacetime
window. Multiple-pass methods such as these may be intractable as
the complexity of the physical system increases. To alleviate these
problems, Cohen [1992] and later Treuille et al. [2003] applied win-
dowing and refinement strategies.

Seeking to avoid these limitations, various authors proposed single-
pass approaches based on guide particles [Rasmussen et al. 2004]
and prescribed force fields [Sifakis et al. 2005; Capell et al. 2005].
Guide-particle methods have focused on fluids, and we are not
aware of an application to thin plates and shells that is free of
tugging or other artifacts (see Fig. 4). In §3.2, we interpret our
method in the framework of a force field approach by regarding
the constrained Lagrangian as a means to automatically determine
fictitious guide forces. Our work fits the single-pass paradigm: a
tracking solver has runtime cost on the order of an ordinary simu-
lation.

Tracking Popović et al. [2000; 2003] and Kondo et al. [2005]
presented systems for rigid and deformable bodies in which a user
sketches a trajectory and sets up key poses, and a physics solver



produces a conforming animation. Motivated by this work, we in-
troduce ideas from multiresolution, enabling our thin shell solver
to add wrinkles and folds without disturbing the coarse motion.
Employing multiresolution in a physical simulation was previously
considered in [Grinspun et al. 2002], which adaptively refined ba-
sis functions to represent geometric detail. In contrast, our work
uses test functions for defining spatially-averaged constraints, ef-
fectively fixing the space of permissible details. While both of
these works use multiresolution in a physical context, several re-
lated works do so in a geometric context:

Enriching surface animations Recently, Kircher and Gar-
land [2006] presented a multiresolution signal processing frame-
work for editing surface animations, which included superimpos-
ing detail on a moving surface. Hadap et al. [1999] and Ma et
al. [2006] added wrinkles to worn garments, and Loviscach [2006]
presented a GPU-based method. These works adopted a geomet-
ric paradigm suited to a wide array of interactive tasks. Galoppo
et al. [2006] introduced a physically based method for simulating
high-resolution surface contact and collisions. However, we are not
aware of prior work that uses physical simulation to add dynamic,
material-dependent wrinkles and folds to an existing animation.

Reuse and data-driven methods Our solver enables an artist
to reuse a coarse animation in achieving many different pos-
sible appearances for the output. Park and Hodgins [2006]
acquired and then reproduced surface wrinkles. Cordier and
Magnenat-Thalmann [2005] developed an interactive cloth sim-
ulator that reuses wrinkles learned from offline simulations.
Both of these methods reuse geometric information; they be-
long to a broader category of approaches that encode and
reproduce surface geometry relative to a subject’s pose (see
[Singh and Kokkevis 2000; Sumner and Popović 2004] and refer-
ences therein). Similarly, reuse of motion sequences was consid-
ered by, e.g., [Zordan and Hodgins 2002; Gleicher et al. 2003].

3 Control via Petrov-Galerkin constraints

In this section, we explain our central idea: matching the tracked
output trajectory to the user-provided input trajectory by using
Petrov-Galerkin constraints. We start with a simple 1D example,
showing the difference between pointwise (interpolating) and weak
(averaged) constraints. In §3.1, we make precise the formulation of
weak constraints, and in §3.2, we show how to enforce these con-
straints using the framework of Constrained Lagrangian Mechanics.

guide shape interpolated averaged interpolated

Figure 3: Interpolating vs. averaging. Starting with a guide shape
(left), interpolating and averaging approaches (center, respectively)
both produce pleasing results in the absence of dynamics. Adding
a sharp acceleration, however, results in tugging artifacts for the
interpolating approach (right), while the results obtained via aver-
aging are unchanged.

Motivation We begin with the experiment shown in Fig. 3, in
which we deform a rubber band (i.e., an elastic curve governed by
bending and stretching forces) to “look like” the given guide shape.
The interpolating approach forces the rubber band to pass through
certain anchor points (shown in red) on the guide shape. On the
other hand, the averaging approach asks for certain mean quan-
tities (such as the centers of mass of corresponding segments be-
tween anchors) to be equal, which leads to an approximating curve

not passing through the anchor points. As shown in Fig. 3, the in-
terpolating approach can lead to undesirable tugging artifacts. The
value of averaging in avoiding these artifacts is widely recognized
in the geometric modeling community [Zorin and Schröder 1998].

Figure 4: Artifacts of pointwise constraints. As the guide
shape rapidly expands and contracts, pointwise constraints produce
high-frequency tugging artifacts, whereas our averaged constraint
method (inset) tracks smoothly.

In Fig. 4, we show a similar experiment for a 2D surface, with
much the same results as in the 1D setting. This example uses more
complicated averaged constraints than equating centers of mass. To
better understand this, we make precise the notion of an averaged
constraint.

3.1 Constraint formulation

Consider the guide and tracked configurations evolving over time
in 3-space, given respectively by

q̄ : Ω×R→ R
3 and q : Ω×R→ R

3
.

Here Ω is the so-called reference or material domain of the elastic
body, q̄ is the deformation mapping of the guide configuration, and
q is the deformation mapping of the tracked configuration from the
material domain into 3-space [Malvern 1969]. We assume that the
guide configuration, q̄(·, t), is given, whereas we view the tracked
configuration, q(·, t), as the temporally-evolving configuration of a
physical system. For the remainder of this section, we focus on a
fixed instant in time and omit the time argument.

We subject the tracked physical system to holonomic constraints
by restricting its motion to the space of permissible configurations,
{q ∈ Q |g(q) = 0}, for some configuration space Q and objective
function g [Lanczos 1986]. In other words, we only consider so-
lutions satisfying the constraint equation g(q) = 0 at all instants in
time. Below, we define g(q), and in §3.2 we explain how to enforce
g(q) = 0 during simulation.

In choosing g we encapsulate the requirement that the tracked and
guide shapes match at certain coarse spatial scales. We define a set
of vector-valued constraints {g1,g2, . . .} by

gi(q) =
∫

Ω
q̄(x)φi(x)dx−

∫

Ω
q(x)φi(x)dx . (1)

This is a set of Petrov-Galerkin equalities, formed by choos-
ing a specific set of test functions {φ1,φ2, . . . ,φK : Ω →
R} [Strang and Fix 1973]. For every φi, we constrain separately
the three coordinate functions of the embeddings q̄ and q. Simply
stated, each equation requires a weighted average of positions on
the guide surface to match a weighted average of positions on the
tracked surface, using φi(x) as the weighting function.

We call attention to some of the properties of these averaged con-
straints: (i) they are linear in the unknown positions, q; (ii) they



depend explicitly on time since the guide shape moves over time;
and (iii) the space of permissible configurations is closed under si-
multaneous rigid transformation of the tracked and guide shapes.

From a Petrov-Galerkin perspective, (1) requires a weak identifi-
cation of tracked and guide coordinate functions under the finite-
dimensional test space spanned by {φi}. However, whereas clas-
sically the space of test functions is chosen based on differen-
tiability requirements and then held fixed throughout the compu-
tation [Strang and Fix 1973], we consider the support and profile
of the test functions as variable in space and time. Indeed, the
choice of test functions is a problem in filter design, if we consider
that (1) requires the low-pass filtered version of the guide geometry
to match the low-pass filtered version of the tracked geometry. The
filter size and shape are linked to the support of the test functions:
the proximity of the tracked to the guide shape increases with the
locality of test function support (see Figs. 5 and 6).

Figure 5: Spatially varying test functions. Buckling of the tracked
surface is directly linked to the distribution of test functions over the
mesh. A homogeneous distribution (left) results in uniform wrin-
kling of the surface, whereas a heterogeneous distribution (right)
causes larger folds to form in coarser regions and smaller wrinkles
to form in finer-support regions.

Thus far, we have assumed the existence of a common reference
surface, Ω. In practice, explicit access to the material domain may
not be possible, e.g., because the software is not finite-element
based, or the user asks for tracked and guide geometry of differ-
ing genus. Therefore, we now relax this assumption.

Consider q̄ and q redefined over two distinct reference configura-
tions, Ω̄ and Ω. In practice, we use the undeformed shape as the
reference configuration. Recall that in (1) the test basis induced a
set of weak equalities evaluated over a common domain. Having
discarded the common domain, we now need a set of mutually cor-
responding test functions, {φ̄i} over Ω̄, and {φi} over Ω (for three
ways to establish this correspondence, see §4.1). Then the resulting
constraint equations are given by

gi(q) =
∫

Ω̄
q̄(x̄)φ̄i(x̄)dx̄−

∫

Ω
q(x)φi(x)dx , (2)

where each test function must satisfy the normalization condition

∫

Ω̄
φ̄i(x̄)dx̄ =

∫

Ω
φi(x)dx . (3)

This condition is always satisfiable by rescaling each φi. When Ω̄
and Ω have different area measures, dx̄ and dx, then normalization
ensures that the space of permissible configurations remains closed
under simultaneous rigid transformation of the tracked and guide
shapes. We now turn our attention to enforcing the constraints given
by (2) and (3) in a physical simulation.

3.2 Constrained Lagrangian Mechanics

TRACKS takes as input a user-provided guide to the object’s motion
and produces as output a physically detailed refinement of that mo-
tion. At each instant in time, the solver evolves the tracked shape
under its governing equations, which include physical forces as well
as averaged constraints. To enforce these constraints, we chose the
method of Lagrange multipliers, which is particularly well suited
for a Constrained Lagrangian Mechanics (CLM) approach.

In constrained mechanics, a physical system must satisfy both the
laws of motion and the constraint of staying on a certain geometric
configuration [Platt and Barr 1988]. By adopting the Lagrangian
viewpoint of mechanics, our method chooses the most physical tra-
jectory of all possible trajectories that satisfy the constraint equa-
tions [Marsden and Ratiu 1994]. This framework leads to the con-
strained Euler-Lagrange equations [Lanczos 1986]

Mq̈−F(q)+λ T ∂g

∂q
= 0 ,

g(q, t) = 0 . (4)

Here, q̈(t) is acceleration, F represents the forces in the system
(both those arising from the elastic stretching and bending energy
of the surface and any external forces), g is the objective function
(2), and λ is the Lagrange multiplier. Our treatment incorporates m
vector-valued constraints, so that g ∈ R

3m and λ ∈ R
3m.

At each instant in time, (4) defines two sets of equations in the
two sets of variables q(t) and λ (t). The first equation represents
the physical evolution of the system according to Newton’s law, in-

corporating fictitious constraint-maintaining forces λ T ∂g
∂q

, whereas

the second equation is used to determine those forces such that the
constraint is exactly maintained.

We view the method of Lagrange multipliers as a way to automat-
ically choose, at any instant in time, constraint forces that are just
strong enough to maintain the constraint, but not stronger than nec-
essary. The Lagrange multipliers themselves control the magnitude
of the force, and the constraint gradient determines the direction of
the force.

Alternative constraint enforcement methods Many equally
viable alternatives can be used to enforce (2) during simula-
tion. Different from our approach, the constraints, g = 0,
may be maintained differentially by requiring that g̈ = 0 (see,
e.g., [Witkin and Welch 1990]), effectively constraining the allow-
able accelerations. This approach gives rise to a linear system for
determining the Lagrange multipliers, λ , even if the constraints
themselves are non-linear. In practice, an additional constraint-
correcting force is used to prohibit undesirable drifting of the solu-
tion away from the constraint manifold and to bring the initial state
into an allowable configuration [Witkin and Baraff 2001]. Since (2)
defines linear constraints, we find it straightforward to work with
g = 0 directly, which entirely eliminates the problem of drifting.

Alternatively to Lagrange multipliers, we could have used penalty
springs to “pull” the system onto the constraint manifold. The
problem with this approach is that it requires a predetermined
stiffness coefficient for each constraint, which can be difficult to
choose. Likewise, critically damping a penalty force can be dif-
ficult. For these reasons, the penalty method may suffer from
unnecessary numerical stiffness, instability, or unsatisfied con-
straints [Platt and Barr 1988; Witkin and Baraff 2001]. Using La-
grange multipliers entirely circumvents these problems.



4 Building a tracking solver

In this section, we begin by describing how to design and imple-
ment the weak-form constraints when using meshes to represent
the guide and tracked surfaces, then show a numerical integration
scheme for the equations of motion that maintain those constraints,
and conclude by pointing the reader to thin shell simulation models
that can be used within this framework.

4.1 Designing test functions

Recall from (2) that in order to create the tracking constraints, we
need to define a matching between the guide and tracked configu-
rations by establishing corresponding test functions over both sur-
faces. We provide one manual and two automatic methods to design
such a correspondence for meshes.

Figure 6: Constraint resolution. Increasing the number of partitions
(left-to-right: 16, 64, 256, 1024) narrows the support of the test
functions, forcing closer tracking and finer wrinkles.

On-mesh painting In the most hands-on approach, the user
paints pairs of corresponding regions on the undeformed (refer-
ence) guide and tracked meshes. To each painted region on the
guide mesh, we associate a test function φ̄i defined to have value 1
for all vertices inside that region and value 0 otherwise. To deter-
mine the constant value of φi within the corresponding region on
the tracked mesh, we use the normalization condition given by (3).

Mesh subdivision For some examples, (see Figs. 4, 8, and 9)
we create the undeformed tracked mesh by linearly subdividing the
undeformed guide mesh; such subdivision automatically induces a
hierarchical basis [Zorin and Schröder 1998]. We use the coarsest
level of the resulting hierarchical basis as the test functions on both
the guide and tracked meshes, so φi = φ̄i. These test functions cor-
respond to the Lagrange basis functions on the guide mesh: each
function φ̄i is linear and defined to be 1 at vertex i on the guide
mesh and 0 at all others.

Variational clustering Motivated by Variational Shape Ap-
proximation (VSA) [Cohen-Steiner et al. 2004], we propose an
animation-aware extension to Lloyd’s algorithm to partition the
guide mesh into r disjoint regions (see Fig. 6) and assign a test func-
tion to each region. To initialize the algorithm, we randomly choose
r triangles as proxies {P1, . . . ,Pr}. The algorithm then proceeds in
two steps: (i) growing regions and (ii) updating the proxies.

Step i: We grow regions around the proxies using the algorithm de-
scribed in §3.3 of [Cohen-Steiner et al. 2004], which assigns each
mesh triangle to the closest proxy while ensuring connectedness of
regions. To compute the distortion distance between a guide mesh
triangle, Tj , and a proxy, Pk, we use the error metric E(Tj,Pk) =

sup
t∈[t0,t1]

A j(t)

(
µ

A(t)
‖x j(t)−xk(t)‖

2 +(1−µ)‖n j(t)−nk(t)‖
2

)

,

where x j(t) and xk(t) are centroids of Tj and Pk respectively, n j(t)
and nk(t) are unit normals associated to Tj and Pk respectively,
A j(t) is the area of Tj , A(t) is the total surface area of the guide
mesh, and all the aforementioned variables are functions of time.
The user-prescribed coefficient µ ∈ [0,1] controls the bias of the
regions toward compactness (µ → 1) or flatness (µ → 0).

Step ii: Next, we recompute the proxy, Pk, for each region as an
area-weighted average of its constituent triangles’ position and nor-
mal; since geometry is a function of time, so are the proxies.

Figure 7: Animation-aware clustering. Results shown using origi-
nal (left) and animation-aware (right) VSA clustering algorithm.

These two steps are repeated until convergence, resulting in a clus-
tering of the guide mesh into regions (see Fig. 7). We use this par-
titioning algorithm only when the undeformed tracked and guide
meshes are identical, so the regions on the tracked mesh are the
same as those on the guide. Once these regions are created, we
again assign a test function φi to each region on the mesh such that
φi = 1 for vertices within the region and φi = 0 otherwise (since the
two meshes are identical, we have φ̄i = φi).

Our error metric differs from that proposed in VSA due to two
considerations: First, whereas VSA’s focus on remeshing prefers
large, flat regions, our focus on tracking prefers evenly-sized, flat
regions; consequently, we use the Euclidean metric in place of
VSA’s distance-to-plane metric. Second, whereas VSA partitions
a static mesh, we seek a fixed partition that is reasonable at any in-
stant in time, t ∈ [t0, t1], for the given animation of the guide mesh.
Therefore, we include a supremum over time. In practice, we ap-
proximate the supremum by considering a maximum over a fixed
set of randomly chosen frames. Notice that our animation-aware
algorithm tends to align seams between regions to boundaries be-
tween rigidly deforming patches, e.g., to the character’s joints (see
Fig. 7).

For the 3038-vertex Xavier (see Fig. 1), our animation-aware par-
titioning required 32 iterations (less than five minutes) to generate
a 200-region partition. The choice of cluster-count effectively con-
trols the cut-off point between the scale of the details added through
simulation and those kept intact from the input guide.



4.2 Implementing constraints

In our implementation, we express the test functions on the guide
mesh as linear combinations of the Lagrange basis functions, {ψ̄ j}:

φ̄i(x̄) =
n̄

∑
j=1

S̄i jψ̄ j(x̄) , (5)

where n̄ represents the number of vertices in the guide mesh. To ob-
tain the entries of the matrix S̄, we use one of the methods from §4.1
to evaluate φ̄i at mesh vertices and set S̄i j = φ̄i(x̄ j), where x̄ j is the
material coordinate of vertex j of the guide mesh. We write the test
functions, {φi}, on the tracked mesh in an analogous manner to (5).

We can now express the 3m constraints from (2) and the associated
gradient at time step k as

gk(qk) = S̄M̄
︸︷︷︸

C̄

q̄k− SM
︸︷︷︸

C

qk and (6)

∇gk(qk) =−C , (7)

where we use the abbreviation gk(qk) = g(qk, tk), and the entries of
the Petrov-Galerkin mass matrix, M , are given by

M j j =
A j

6
and M jl =

A jl

12
.

Here, A j denotes the total area of the triangles incident to vertex j,
and A jl denotes the total area of the triangles incident to edge jl

(and analogously for M̄ ).

The normalization condition from (3) can be satisfied by scaling the
entries in each row of C at the beginning of the simulation:

Ci←Ci

∑n̄
j=1 C̄i j

∑n
l=1 Cil

. (8)

Since the matrices C and C̄ depend only on the undeformed meshes
and the test functions, they can be precomputed for efficiency.

4.3 Numerical integration

We describe our implementation of the constrained implicit
Euler method (for alternatives consult [Hauth et al. 2003;
Boxerman and Ascher 2004; Hairer et al. 2006]):

M
q̇k+1− q̇k

h
−F(qk+1)+λ T

k ∇gk(qk) = 0 ,

qk+1−qk

h
− q̇k+1 = 0 ,

gk+1(qk+1) = 0 .

Here (q1,q2, . . .) denotes the time-discrete trajectory of the fine
mesh, (q̇1, q̇2, . . .) denotes the velocities along the trajectory, M is
the physical mass matrix, and F represents the forces present in the
system (see §4.4). The above system can be rearranged as an im-
plicit equation in the unknown variables (q̇k+1,λk), with the update
rule for qk+1 given in the second line. We compute a single iteration
of Newton’s method per time step, as in [Baraff and Witkin 1998].
Taking (q̇k,0) as the initial guess for (q̇k+1,λk) yields:
[

M−h2JF (qk +hq̇k) h [∇gk(qk)]
T

h∇gk(qk) 0

][
∆q̇
λk

]

=

[
hF(qk +hq̇k)
−gk+1(qk +hq̇k)

]

,

where JF (qk +hq̇k) is the Jacobian of forces evaluated at qk +hq̇k,
and the constraint and constraint gradient are evaluated using (6)
and (7), respectively. We solve this system for (∆q̇,λk) using the
PARDISO [Schenk and Gärtner 2006] sparse linear solver, then set

q̇k+1 = q̇k +∆q̇ and qk+1 = qk +hq̇k+1 .

4.4 Implementing thin shell simulations

Our approach is not tied to a particular way of discretizing shells
or cloth and easily incorporates into an existing solver with its
constituent implementation of bending and stretching forces. We
chose to work with triangle meshes and employed the model of
Discrete Shells [Grinspun et al. 2003] for bending potential en-
ergy and Constant Strain Triangle [Zienkiewicz and Taylor 2000]
for in-plane stretching potential energy. As these mod-
els (and several variants surveyed in [Ng and Grimsdale 1996;
Thomaszewski and Wacker 2006]) are by now well known and
widely employed by the graphics community, we refer the reader
to the above references for details.

The true power of tracking is most evident when the underlying
(non-tracking) simulator is able to capture the look and feel of many
different materials. In this light, we briefly describe a simple plas-
ticity model that broadened our simulator’s expressive power.

Simple model for plasticity Plasticity has been widely studied
within computer graphics: see [Terzopoulos and Fleischer 1988;
O’Brien et al. 2002; Irving et al. 2004; Gingold et al. 2004;
Wicke et al. 2005] and references therein (for an overview of
plasticity, see [Zienkiewicz and Taylor 2000]). We briefly outline
a model for plasticity developed primarily with consideration for
(a) simplicity of implementation and (b) proper scaling (material
response should not depend on mesh- or time-resolution).

We start with the bending model used in [Baraff and Witkin 1998;
Bridson et al. 2003; Grinspun et al. 2003] and add two additional
parameters: (i) maximal curvature deviation, ∆κmax ∈ [0,∞], which
dictates the maximal strain for which response is purely elastic and
(ii) hardening factor, η ∈ R, which governs the hardening (η > 0)
or softening (η < 0) of creases due to plastic work. For each mesh
edge, we store the undeformed configuration’s bend angle, θ̄i, as
well as a per-edge elastic bending stiffness, ki. At the start of each
time step, we test for a plastic update on each edge (the subscript i
is implied). We compute the curvature deviation,

∆κ = κ− κ̄ =
ē

2Ā
(θ − θ̄) ,

where Ā is the combined area of the undeformed triangles incident
to edge ē, and θ (resp. θ̄ ) is the angle formed between incident
deformed (resp. undeformed) triangle normals. Unlike the change
in bend angle (θ − θ̄ ), the curvature deviation accounts for spatial
scaling (mesh sampling density) [Grinspun 2006]. If |∆κ|> ∆κmax,
we perform a plastic strain update with plastic hardening:

θ̄ ← θ − sign(∆κ)
2Ā

ē
(|∆κ|−∆κmax) ,

k← k exp(η (|∆κ|−∆κmax)) .

We note that the exponential provides proper temporal scaling.

No mercy.

External forces and collisions

While we focus mainly on material
properties, our method accommodates
wind and other external forces. As it is
single-pass and involves only forward-
dynamics, any existing collision-
response code should be compatible
with our approach; in contrast, space-
time optimization has difficulties under
complex collisions [Wojtan et al. 2006].
Our experiments use the robust treat-
ment of collisions and self-collisions
described in [Bridson et al. 2002].



5 Applications

In the following application examples, we demonstrate TRACKS
by directing discrete shell simulations. The computation times for
the tracking solver are very practical, consuming for the most com-
plex examples comfortably below four hours on a 2GHz processor.
Indeed, we find that, consistent to our goal, the bulk of our time
and effort is allocated to the artistic process. We consider scenarios
spanning four axes:

• To create the input trajectory, we use a rapid-preview physical
simulation in §5.1, procedurally generate motion in §5.2, build
on a motion-capture (mocap) sequence in §5.3, and ask an artist
to animate expressive character gestures in §5.4.

• In regards to input mesh resolutions, we test a coarsest possible
input in §5.2, a more refined input in §5.1 and §5.3, and a fine
input in §5.4.

• In setting up input→output combinatorics: the output corre-
sponds to a combinatorially-subdivided input in §5.1, §5.2, and
§5.3, whereas input and output are combinatorially identical in
§5.4.

• We consider three techniques for creating test functions: in
§5.2–§5.3 we use the Lagrange basis of the guide mesh, prolon-
gated onto the fine tracked mesh via linear subdivision; in §5.4,
we use a novel extension to Lloyd’s algorithm to automatically
construct a piecewise constant basis; but first, in §5.1, we put
aside the automatic methods, and manually paint a pair of test
functions.

5.1 Simulation design with fast, coarse previews

Fleshing out a coarsely-run simulation is a prototypical use of our
solver. As shown in the accompanying video and Fig. 2, the director
intends for the flying cloth to get stuck on a branch. We search for
initial conditions and material coefficients using a rapid preview
design cycle: working with a coarse mesh (35 vertices), after twenty
design iterations, or about 100min working on a 2GHz notebook,
we establish our desired parameters (see Fig. 2-left). If instead,
the full-resolution mesh (1625 vertices) were used during design,
the consequent simulation cost (30+ hours) would require a batch
process, instead of a rapid and thus more intuitive design cycle.

Unfortunately, the preview’s parameters do not translate well to the
high-resolution simulation as shown in Fig. 2-middle. Indeed, de-
spite great care in designing a system of meshing-independent sim-
ulation parameters (i.e., a system that incorporates well-reasoned
scaling factors), the bifurcations and complex configuration land-
scape of quasi-inextensible surfaces that buckle and fold make it
very unlikely that a coarse and fine simulation will agree.

Using our tracking method ensures that the final, expensive, high-
resolution computation produces the expected results on the first
run. We use four hand-painted test functions on the flag because
our goal is to guarantee a global trajectory for the cloth, not to con-
trol its fine shape. The fine mesh is a combinatorially-subdivided
version of the input one.

5.2 The simple box

A more challenging scenario is one in which the coarse motion is
not physically based. Our simplest such experiment begins with a
coarse box modeled with eight vertices (see Fig. 8), which is an-
imated with procedurally-generated rigid motion of the top face
while the bottom face is fixed to the ground. We produce the cor-
responding fine mesh by linearly subdividing four times (triangle

Figure 8: Material axes. Traditionally, after an animation is com-
pleted, the lighting and rendering crew adjust and compare various
rendering alternatives. With TRACKS, an artist enjoys the post facto
freedom to also adjust material and dynamical properties: (top)
bending and stretching stiffness control the shape of wrinkles dur-
ing a twist; (middle) plastic yield and hardening control whether
the material rebounds or the wrinkles persist; (bottom) damping and
mass density control oscillations such as vibrations and wobbliness.

quadrisection and a linear geometric stencil), and we choose as our
(piecewise linear) test functions the coarsest subdivision basis.

The viewer witnesses an inanimate object come to life, as the fine
box simultaneously achieves two objectives: (i) it clearly tracks the
non-physical coarse motion while (ii) exhibiting dynamical mate-
rial properties. By dynamical, we mean that similar effects could
not be achieved by post-processing each frame of the coarse an-
imation in isolation. For example, at the end of the sequence, the
coarse mesh suddenly stops moving, yet the tracked mesh continues
to move under inertia.

5.3 Motion-captured backflip

By combining multiple constitutive laws and dynamical controls,
TRACKS enables an artist to apply a broad range of material behav-
iors to a predefined coarse motion. Since TRACKS is a framework
incorporated over existing simulation code, it inherits the expres-
sive power and material realism existent in the underlying simula-
tion software.

In this example, we begin with mocap data of a breakdancer’s back-
flip. As depicted in Fig. 9 and the accompanying video, we apply



Figure 9: Reusing motion-capture trajectories. We naı̈vely rig a coarse mesh and use off-the-shelf motion-capture data to obtain the animation
shown top-left, which, while riddled with self-collisions, serves as input to the automatic tracking process. The following sequences depict
snapshots of a collision-free 1297-vertex mesh tracking the coarse motion under a variety of dynamical and material parameters.

the mocap sequence to a coarse (88 vertices) triangle mesh using an
industry-standard rigging tool [Autodesk]. To create the initial fine
mesh (1297 vertices), we twice subdivide the initial coarse mesh.
Once again, we use the subdivision basis functions of the coarse
mesh as the test functions for the weak constraints.

Holding the input trajectory fixed, we run the tracking algorithm us-
ing various dynamical and material parameters, obtaining a diverse
range of results (refer to video and Fig. 9). The coarse mocap-
induced motion is riddled with surface self-intersections, which are
fully resolved during tracking.

Elasticity The first animation depicts a red vinyl material. Notice
the fine vertically-oriented wrinkles and folds formed as the top
of the bag contracts in the first snapshot, the crinkly top and boxy
backside corners in the third snapshot, and the vertically-rippled ap-
pearance due to slight lateral contraction in the final snapshot. We
achieve this look using a highly damped elastic shell model. Ob-
serve that damping affects only the material, not the coarse motion.

Damping The second animation depicts a flowy, undamped mate-
rial reminiscent of an orange silk satchel. Because we use identical
elastic parameters, in the first snapshot the red vinyl and orange
flowy materials appear to be similar. However, since the second
material is relatively undamped, its appearance diverges from the
first as time advances. The impact of the backflip’s hard landing
(third snapshot) causes flowy, larger-wavelength horizontal waves
(subtly, the smaller-wavelength vertical ripples due to the bag’s lat-
eral compression remain discernable).

Undeformed configurations The next pair of animations use our
ability to track the coarse mesh using differing undeformed config-
urations. Applying coarse horizontal folds effects an accordion-like
geometry on a purple bag; likewise, we obtain the appearance typi-
cal of a woven red-ribbon gift bag with a set of fine vertical ridges
(refer to video). Altering the undeformed shape affects the objects’
silhouettes and influences the formation and positioning of addi-
tional wrinkles, buckles, and folds (compare snapshot four to mate-
rials with a flat rest state)—these effects exceed what is achievable
purely during rendering.

Complex collisions Building on this, we perturb the undeformed
configuration with noisy offsets in the normal direction, achieving
the appearance of a crinkled cellophane bag. The rough surface
features did not noticeably alter runtime: tracking is affected by
collisions much like an ordinary simulation; in contrast, many op-
timization methods rely on smoothness properties that are annihi-
lated by rough collision landscapes.

External forces The final example incorporates a strong external
wind force. This force excites the material without disturbing the
gross motion, creating a psychedelic effect.

Unlike the coarse input, the tracked output is free of self-
intersections. While one could conceivably attempt these material
effects by subdividing the coarse motion and procedurally superim-
posing crinkly geometry or flowy motion, a simulation-based ap-
proach excels at producing temporally-evolving wrinkles and folds
while steering clear of collisions present in the input data.

5.4 Physically detailed characters

Figure 10: Synergy of art and science. We underscore the anima-
tor’s broad gestures (left) with a simulated headwind (right). For
equal comparison, both are rendered using 16-frame motion blur.

Our final example explores the role of TRACKS as a catalyst for
synergy between art and physics. The artist models and animates



Xavier, an X-shaped biped (see Figs. 1,6,10) made of thin, flexible
material. In doing so, she disregards physical details, such as wrin-
kling and buckling, and focuses on expressive motion, such as shift-
ing body weight, sudden movement, and keeping time to the mu-
sic. The tracking process enables us to outfit Xavier’s motion with
different materials and physical effects. As Xavier walks past his
friends, observe the perfect roll-through of his feet—painting fine
test functions on the feet enables us to precisely echo the artist’s
intent. Next, Xavier encounters a strong headwind (see Fig. 10).
We underscore Xavier’s struggle by introducing wind forces that
make his body rapidly flutter. This would have been painstaking
to achieve by hand. In the next scene, Xavier steps on a live wire,
and by altering the undeformed configuration between a crinkly and
smooth state, we (regrettably) simulate the consequent electrocu-
tion (see Fig. 1). Fortunately, Xavier “shakes off” the remaining
charge and returns to his unruffled state.

5.5 Timing comparisons

# verts # verts # con- increase time per increase

(guide) (tracked) straints in DOFs frame (s) in time

§5.1 35 1625 4 0.2% 17.7 (17.0) 4.1%

§5.2 8 1538 8 0.5% 15.8 (14.9) 6.0%

§5.3 88 1297 88 6.8% 16.1 (15.7) 2.5%

§5.4 3038 3038 280 9.2% 43.2 (39.0) 10.8%

We report the runtimes on a 2GHz CPU for the various simulations throughout this

paper using our tracking solver. For comparison, we have also listed in parenthe-

ses the runtimes obtained by simply running a standard simulation using the same

parameters but with no tracking. We see a typical increase in simulation time of

5%–10% for the problems considered.

The exact runtimes we report for the examples in this paper are
very specific to our implementation; however, our experience for
all the example applications is that solving the constrained system
incurs typically a 5%–10% overhead over an unconstrained simu-
lation. Unlike collision detection for example, tracking is not done
as a separate pass but as part of the simulation itself, so optimizing
the simulation code would not change the percentage increase in
runtime due to tracking.

6 Discussion

We presented TRACKS, a framework which enriches given input
motion of thin flexible surfaces with physically simulated detail.
Our approach may be viewed as a method inspired by the “line of
action” metaphor [Thomas and Johnston 1981]—adding detail to a
preview in a coarse-to-fine workflow. Our solver, in a single pass,
provides such detail by integrating the equations of motion subject
to constraints dictated by the input guide trajectory; we perform
this integration using the framework of constrained Lagrangian me-
chanics. The scale at which our solver adds detail is controlled
by the size and shape of Petrov-Galerkin test functions. We have
shown the influence of the support and spatial distribution of test
functions in controlling the characteristic shape of wrinkles and
folds of thin shell materials. One particular avenue we plan to pur-
sue in the future is to explore the effect of temporally varying test
functions for input meshes that exhibit subtly changing detail over
time.

In our current formulation of tracking, constraint forces always
overpower the material’s internal forces, without discrimination
as to whether they arise from stretching versus bending response.
Consequently, if the artist animates the mesh in a stretching mode,
the underlying material will also stretch. While this is often de-
sirable, there are cases where it is preferred that the material re-
main inextensible, even if the consequence is violation of the av-
eraged constraints. Therefore, we are interested in extending the

tracking formulation with a form of constraint regulation that ef-
fectively bounds constraint forces so that, when desired, they affect
bending but not stretching modes. Furthermore, in the future, we
would like to explore methods for constraining the silhouettes of
animated characters, since art-directing the silhouettes is common-
place in traditional animation [Thomas and Johnston 1981].

Tracking offers the opportunity to experiment with a diverse range
of thin shell appearances that defy emulation via geometric subdivi-
sion or per-frame post-processing. While our examples focused on
thin plates and shells, the theory behind TRACKS requires only the
existence of a computationally-tractable Lagrangian formulation,
e.g., such as those known for fluids and solid elastica. Therefore,
we expect that this general framework also find applications in an-
imation of smoke, liquids, biological tissue, and solid elastica. We
hope that this paper will spur exploration in these and other direc-
tions.

Acknowledgments We would like to thank Rasmus Tamstorf, Bran-

don Michael Arrington, and Mathieu Desbrun for their influence on this
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a simple framework for adaptive simulation. ACM TOG 21, 3
(July), 281–290.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER,
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SCHENK, O., AND GÄRTNER, K. 2006. On fast factorization
pivoting methods for symmetric indefinite systems. Elec. Trans.
Numer. Anal., 158–179.

SHI, L., AND YU, Y. 2005. Controllable smoke animation with
guiding objects. ACM TOG 24, 1 (Jan.), 140–164.

SIFAKIS, E., NEVEROV, I., AND FEDKIW, R. 2005. Automatic
determination of facial muscle activations from sparse motion
capture marker data. ACM TOG 24, 3 (Aug.), 417–425.

SINGH, K., AND KOKKEVIS, E. 2000. Skinning characters using
surface oriented free-form deformations. In GI ’00, 35–42.

SMITH, J., WITKIN, A., AND BARAFF, D. 2001. Fast and con-
trollable simulation of the shattering of brittle objects. CGF 20,
2, 81–91.

STRANG, G., AND FIX, G. 1973. An Analysis of the Finite Element
Method. Wellesley-Cambridge Press.
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