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We present a numerical model for the dynamics of thin viscous threads based on a
discrete, Lagrangian formulation of the smooth equations. The model makes use of a
condensed set of coordinates, called the centerline/spin representation: the kinematic
constraints linking the centerline’s tangent to the orientation of the material frame
is used to eliminate two out of three degrees of freedom associated with rotations.
Based on a description of twist inspired from discrete differential geometry and from
variational principles, we build a full-fledged discrete viscous thread model, which includes
in particular a discrete representation of the internal viscous stress. Consistency of the
discrete model with the classical, smooth equations for thin threads is established formally.
Our numerical method is validated against reference solutions for steady coiling. The
method makes it possible to simulate the unsteady behavior of thin viscous threads in
a robust and efficient way, including the combined effects of inertia, stretching, bending,
twisting, large rotations and surface tension.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Context

The flow of thin viscous filaments is relevant to a variety of industrial processes such as the drawing and spinning of
polymer and glass fibers [1–3], and to natural phenomena such as formation of Pele’s hair by lava ejected at high speed by
volcanoes [4]. In art, Jackson Pollock took advantage of the coiling instability of a thin viscous fluid, the paint, impinging a
surface, the canvas, to produce a variety of decorative patterns by a fluid-mechanical process [5]. A commonplace version
of the same coiling instability is observed when a thin thread of honey is poured on a morning’s toast. This steady coiling
problem is prototypical of the dynamics of thin threads. Its apparent simplicity has made it appealing to fluid mechanicians
for a long time [6,7]; however the various regimes of steady coiling and its non-linear features, such as the coexistence of
multiple stable states, have been understood in full details only recently [8–11]. To a large extent, the analysis of steady
coiling has been made possible by the availability of numerical simulation: the shape of the thread in the co-rotating frame
is stationary, and is given by a non-linear boundary-value problem [9] which has been solved using numerical continua-
tion.

* Corresponding author.
E-mail address: audoly@lmm.jussieu.fr (B. Audoly).

0021-9991/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2013.06.034



Author's personal copy

B. Audoly et al. / Journal of Computational Physics 253 (2013) 18–49 19

Fig. 1. The fluid-mechanical sewing machine illustrates the complex behavior of thin viscous threads. This sketch of the experiment of [12] shows a thread
poured onto a moving belt. The thread traces out a number of possible patterns depending on the fluid properties, the injection volume rate Q c , the rate
of fall H and the belt velocity Ub. This geometry is simulated using our method at the end of the paper in Section 6.2.

In this paper we are interested in the simulation of the unsteady behavior of thin threads, which is far less advanced. As
an illustration, consider a recently proposed variant of the coiling problem, similar to Pollock’s painting technique, whereby
the target surface moves horizontally at a constant velocity, as illustrated in Fig. 1. The relative motion suppresses steady
coiling solutions and forces the flow to become unsteady. More than ten different patterns can be produced by varying the
lateral velocity of the surface and the fall height [12,13], a number of which have convoluted and intriguing shapes. The
patterns are reminiscent of stitch patterns, and the experiment has been coined the ‘fluid-mechanical sewing machine’. This
experiment illustrates the complex behavior that can result from the dynamics of a thin, perfectly viscous filament. Except
for the one presented in this paper, existing numerical methods are unable to reproduce this behavior.

The dynamics of thin threads is governed by the interplay of three local modes of deformation, namely stretching, bend-
ing and twisting modes [14,15]. At the global scale, these modes are coupled by geometrically non-linear terms, which
makes the resulting dynamics remarkably rich. The main difficulty in simulating the motion of thin threads is that the un-
derlying non-linear partial differential equations are numerically stiff, due to the different length scales at which stretching
and bending operate. This paper tackles this difficulty by introducing a careful and well-controlled space discretization. In
fact, we introduce a full-fledged discrete viscous thread model by extending all the relevant physical quantities, such as
strain rates and internal stress, to the discrete setting.

Fluid-mechanical problems involving free boundary conditions can be simulated using refined variants of the marker and
cells method, namely the method of [16,17] for 2d viscous flows, and the GENSMAC method [18,19] for 3d viscous flows;
more recently implicit schemes coupled with projection methods have been proposed, see e.g. [20]. The present paper is
concerned with thin filaments, for which the above methods are not efficient: when the thickness is small compared to the
longitudinal length scale, it is beneficial to use dimensionally reduced equations as a starting point for simulations. Thanks
to dimensional reduction, the structure of the flow at small scale is solved analytically, which makes it possible to use a
simulation grid much coarser than the thickness.

While our simulation method addresses the general non-steady dynamics of a thin thread governed by the combined
effects of twist, bending and stretching forces, inertia and large rotations, a number of particular cases have been simulated
in the literature. Steadily rotating viscous threads are described by time-independent equations in the co-rotating frame,
which have been solved numerically using methods for two-point boundary-value problems [9,11,21]. The dynamics of a
viscous string, where both the bending and twisting modes are neglected, has been considered [22]. The periodic folding of
a viscous thread or sheet has been considered in a 2d geometry [23,24] where twist does not play any role. By combining
the simulation of steady solutions with analytical expansions describing oscillatory perturbations of small amplitude, the
stability of both the steady coiling solution [11] and of the catenary-like profile of a dragged thread [25] have been cal-
culated. Many other problems, such as the existence of rotatory folding, the competition between folding and coiling [26],
the stitch patterns produced by the fluid-mechanical sewing machine [12] and the loss of stability of steady coiling by
precession [27] remain inaccessible to those simulation methods that are based on restrictive assumptions.

In comparison to viscous threads, elastic rods have received a lot of attention, both from the perspective of analysis
[28–31] and simulation [32–37]. By the Rayleigh–Taylor analogy [7], the stress in a viscous fluid is identical to the stress in
an elastic solid, when the strain rate is replaced with the strain. This analogy explains the buckling of viscous sheets [38,39],
a phenomenon classically associated elastic structures. One can take advantage of this analogy to simulate the dynamics of
viscous threads using a simulation tool written for elastic rods [40]; we explored this approach in a conference paper [41].
Here we propose a self-standing implementation of the viscous model.

Stretching is important for viscous threads, even though it is often neglected for thin elastic rods. This is well illustrated
by the phenomenon of helical coiling: a thin thread poured from a container onto a fixed obstacle gets stretched by gravity.
It remains straight over almost the entire fall height, but bends and twist severely in a small boundary layer near the
bottom. Even though the rate of stretching is mild everywhere along the thread, its effect is cumulated over the entire time
of descent. As a result, the net stretch is significant, and the thread is much thinner at the bottom.
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In one of our recent papers [42], some of us have used the numerical method presented here to set up numerical
experiments of the viscous sewing machine; our goal was to get physical insights into this fluid-mechanical problem. We
introduced the principles of the numerical method, staying at a very general level and providing no details on how the twist
is treated, for instance. The present paper is the first complete description of our numerical method.

1.2. Features of the model

The derivation of dimensionally reduced models for thin viscous filaments has a long history. The equations for thin
viscous threads were derived by asymptotic expansion from the equations for a 3d viscous fluids by Entov and Yarin [43].
Their work builds upon the previous analyses of viscous stretching by Trouton [14], and of viscous bending by Buckmas-
ter and co-workers [44,45]. Recent derivations of the equations for thin threads benefit from a clear identification of the
mechanical quantities in the 1d model [46], and of the systematic use of Lagrangian coordinates [21]. Asymptotic models
accounting for more general constitutive laws have been proposed: the case of a visco-elastic fluid is treated in [47], and a
general framework is considered in [48] which can produce a variety of asymptotic models when a specific set of physical
effects is considered.

Here we consider the dynamics of a thin filament of an incompressible, purely viscous fluid having circular cross-section,
under the action of external forces such as gravity, and internal forces (viscous stretching, bending, twisting, and capillary
tension). We consider the 3d problem, and the curvature and kinematic twist of the thread can be comparable to, or smaller
than the inverse of the thread’s length. Even though the fluid is very viscous, the effect of inertia is considered. The role
of inertia is well illustrated by the classical analysis of the pendulum modes of a viscous string, see e.g. [10]: in this
almost straight geometry, the flow in the axial direction is typically governed by a small Reynolds number and dominated
by viscosity, although the flow in the transverse direction, which is characterized by different length and time scales, is
associated with a much larger Reynolds number and dominated by inertia. In general, the local axial and transverse modes
get coupled by the curvature of the filament.

1.3. Proposed approach

The main features of our numerical method are the following. It is based on a 1d model obtained by dimensional
reduction, which makes it much more efficient than a general-purpose model for 3d viscous flows. We use a Lagrangian
grid, making simulation vertices flow along with the fluid; this simplifies the computation of viscous forces which, by the
constitutive law, are proportional to the co-moving time derivative of the kinematic twist and curvature. We use a reduced
set of coordinates, called the centerline/spin representation, obtained by eliminating two out of three degrees of freedom
associated with rotations. Our description of the internal viscous stress includes the three physically relevant contributions
of stretching, bending and twisting. The discrete expressions of these forces are derived naturally based on the variational
method of Rayleigh potentials. Given the numerical stiffness of the underlying problem, robustness is a central issue. In
our numerical scheme, the viscous forces are treated implicitly with respect to the velocity. Together with a careful space
discretization, this provides excellent robustness.

The discretization of bending in elastic rods is routinely done using flexural springs at hinges [49], and the extension
to viscous bending is straightforward. Discrete twist forces are much less common. Ours make use of a discrete notion of
twist based on concepts from discrete differential geometry, and are directly borrowed from our previous work on elastic
rods [35].

This paper is organized as follows. In the rest of this section we derive useful identities of geometry and differential
calculus. In Section 2 the equations for thin viscous threads are presented in a way that prepares the extension to the
discrete setting: the Lagrangian centerline/spin description of motion is introduced and the internal viscous forces and
moments are derived from variational principles. In Section 3 the discrete model is presented in close analogy with the
smooth case. Section 4 considers time discretization, the treatment of boundary conditions and the coupling of the thread
with external bodies. In Section 5, the code is validated against reference solutions for steady coiling. In Section 6, we
discuss limitations and perspectives. In Appendices A–D, we provide material that helps building up a physical intuition
of our numerical thread model, and demonstrates equivalence with the Kirchhoff equations familiar to fluid and solid
mechanicians.

1.4. Mathematical identities and notations

We use underlines for vectors (a) and double underlines for rank-two tensors such as matrices (a).
Infinitesimal rotations are described as follows. Consider an orthonormal frame di(σ ) in the 3d Euclidean space, i =

1,2,3, which is a smoothly differentiable function of a continuous parameter σ . Its rate of rotation is measured by the
Darboux vector Γ (σ ), defined as the unique vector such that for any i = 1,2,3:

ddi(σ )

dσ
= Γ (σ ) × di(σ ). (1)
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Fig. 2. Reference and actual configuration of the thread.

This definition will be used later with σ replaced by the time t , or the arc length S . An explicit expression for the Darboux
vector can be found by singling out any particular vector di in the triad, say d3:

Γ (σ ) = d3(σ ) × dd3(σ )

dσ
+ Γ3(σ )d3(σ ), (2)

where Γ3 = Γ · d3 is defined by

Γ3(σ ) = dd1(σ )

dσ
· d2(σ ). (3)

This can be checked by inserting Eq. (3) into Eq. (2) and then into Eq. (1).
For any unit vector q and for any vector a, the projection P⊥ in the direction perpendicular to q is defined by

P⊥(q,a) = (1 − q ⊗ q) · a = a − (q · a)q, (4)

where the last term in the right-hand side is the longitudinal projection.

2. Smooth setting: the centerline/spin representation of viscous threads

Thin threads have been simulated using Eulerian variables, see e.g. [11,21]. Equations of motion based on Lagrangian
variables have been derived [21], but we are not aware of any simulation method for thin viscous threads based on a
Lagrangian grid. This is the approach we explore in this paper. It allows one to simulate the non-steady behavior of thin
threads in a convenient way. In this section, we start by deriving the centerline/spin representation of thin threads in
Lagrangian variables: this form of the equations of motion is used later to derive the discrete model.

2.1. Reference configuration

The Lagrangian description makes use of a reference configuration. A convenient choice is to use an infinite, circular
cylinder of constant radius a0, as illustrated in Fig. 2. The fluid being incompressible, assume that the mapping between the
reference and actual configurations preserves volume.

2.2. Kinematics of centerline

The viscous thread can stretch, and we make a careful distinction between the arc length measured in reference con-
figuration, which is denoted by S , and the arc length measured in actual configuration, denoted by s. We use S as the
Lagrangian coordinate: it follows fluid particles. Let t be the time. For any function f (S, t), we denote its spatial derivative
using a prime, and its time derivative using a dot,

f ′(S, t) = ∂ f (S, t)

∂ S
, ḟ (S, t) = ∂ f (S, t)

∂t
. (5)

This time derivative is known as a convected derivative, and is often written ḟ = ∂ f
∂t = D f

Dt in the Eulerian context.
At time t the centerline of the thread is given by the function x(S, t), see Fig. 2. The material tangent of the thread is

denoted by T (S, t) and defined by

T (S, t) = x′(S, t). (6)

Note that this is not a unit vector in general.
Indeed, the norm of T (S, t), denoted by �(S, t), measures the amount of stretching of the centerline with respect to the

reference configuration:
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�(S, t) = ∣∣T (S, t)
∣∣ =

∣∣∣∣∂x(S, t)

∂ S

∣∣∣∣. (7)

The unit tangent to the centerline is then defined by

t(S, t) = T (S, t)

�(S, t)
. (8)

In our Lagrangian description, the arc length s in actual configuration is viewed as a secondary quantity. It can be
reconstructed by integration of the differential equation expressing the identity ds = |dx|, namely s′(S, t) = �(S, t).

The velocity u is simply the time derivative of position,

u(S, t) = ∂x(S, t)

∂t
. (9)

The rate of change of the stretching strain of the centerline is denoted by d and defined by

d(S, t) = t(S, t) · ∂u(S, t)

∂ S
. (10)

As implied by its name, this quantity is the convected derivative of the axial stretch �: the identity d = �̇ is established in
Appendix A.1. Note that this Lagrangian measure of the stretching strain differs from the Eulerian strain rate, denoted by dE

later, familiar to fluid mechanicians.
A useful identity follows from taking the time derivative of the identity T = �t , implied by Eq. (8). This yields u′(S) =

�̇t + �ṫ . Applying the perpendicular projection operator P⊥(t, ·) on both sides, and using the fact that ṫ is perpendicular to t
since t is a unit vector at all times, we have

∂t(S, t)

∂t
= 1

�(S, t)
P⊥

(
t(S, t),

∂u(S, t)

∂ S

)
. (11)

This equation will be used to reconstruct the time derivative of the tangent from the centerline velocity u.

2.3. Incompressibility: radius and related quantities

The radius of the thread in the actual configuration is denoted by a(S, t), the area is A(S, t), and I(S, t) stands for the
geometric moment of inertia:

A(S, t) = πa2(S, t), I(S, t) = πa4(S, t)

4
. (12)

The fluid volume enclosed in an infinitesimal chunk of the thread reads A(S, t)ds = A(S, t)�(S, t)dS in the actual config-
uration, and A0(S, t)dS in reference configuration, see Fig. 2. As a result, the incompressibility of the fluid is expressed
by

a(S, t) = a0√
�(S, t)

, A(S, t) = A0

�(S, t)
, I(S, t) = I0

�2(S, t)
(13)

where the subscript naught refers to the reference configuration, for which we have �0 = 1 by convention: A0 = πa2
0 and

I0 = πa4
0/4.

2.4. Material frame, adaptation

To complete the description of the motion, we need to keep track of twist, which gives rise to viscous shear stress.
It is defined as the rotation of the cross-sections about the tangent. Let us consider an orthonormal triad, denoted by
(d1(S, t),d2(S, t),d3(S, t)), which is rigidly attached to the cross-sections. This triad is called the material frame: it follows
the motion of the particles inside the viscous thread.

Let us denote ω(S, t) the angular velocity of the material frame, and π(S, t) the twist-curvature vector. Each one is a
Darboux vector, as defined generically in Eq. (1), one being associated with increments of the variable σ = t and the other
one with increments of σ = S:

∂di(S, t)

∂t
= ω(S, t) × di(S, t) (14a)

∂di(S, t)

∂ S
= π(S, t) × di(S, t), (14b)

for any value of the index 1 � i � 3. The vector ω is the angular velocity of the fluid. The twist-curvature vector measures
the rate of rotation of the material frame per unit Lagrangian arc length dS: its tangential component measures twist, and
its perpendicular components measures curvature.
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The fact that the frame {di}1�i�3 follows the motion of the fluid particles, and at the same time remains orthonormal at
all times, is known as the Kirchhoff kinematic hypothesis. The word ‘hypothesis’ is used for historical reasons, but it can be
justified rigorously by asymptotic analysis. In Ref. [11], for instance, it is shown that the flow inside the thread is shearless
in the limit of very thin thread, as in the case of elastic rods [50]. As a consequence of the Kirchhoff hypothesis, the material
frame has to stay compatible with the centerline, in the sense that

d3(S, t) = t(S, t). (15)

This kinematic condition couples the rotations of the material frame in the left-hand side with the motion of the centerline
in the right-hand side. Note that this condition does not imply inextensibility, as t has been defined as a unit vector, even
in the presence of stretching (|T | �= 1).

The tangential components of the Darboux vectors ω and π are called the spin velocity v(S, t) and the kinematic twist τ ,
respectively:

v(S, t) = ω(S, t) · t(S, t) (16a)

τ (S, t) = π(S, t) · t(S, t). (16b)

These quantities have appeared under the generic notation Γ3 in Eq. (3): by this equation, v is given by v = ḋ1 · d2 and
τ = d′

1 · d2. The kinematic twist τ measures the rate of rotation of the material frame about the tangent. Note that it is
different from the familiar notion of Frénet–Serret torsion which is irrelevant to the dynamics of threads.

Explicit expressions for the angular velocity and twist-curvature vectors can be found from Eq. (2):

ω(S, t) = t(S, t) × ∂t(S, t)

∂t
+ v(S, t) t(S, t) (17a)

π(S, t) = K (S, t) + τ (S, t) t(S, t), (17b)

where we have introduced the binormal curvature:

K (S, t) = t(S, t) × ∂t(S, t)

∂ S
(17c)

that depends only on the centerline, and not on the material frame. Consistently with our Lagrangian approach, both the
kinematic twist τ and the binormal curvature K refer to a unit increment of the Lagrangian coordinate S: they differ from
the twist and curvature used in the Eulerian framework, which refer to unit increments of s instead.

2.5. Rates of strain

The strain rates are required in the constitutive laws of the viscous thread. By the identity (A.1) derived in Appendix A,
the rate of strain associated with the stretching mode is simply d(S, t) = �̇(S, t). The rate of strain associated with the
bending and twisting modes is captured by a vector denoted by e, called strain rate vector and defined as the gradient of
angular velocity,

e(S, t) = ∂ω(S, t)

∂ S
. (18)

For a rigid-body motion, ω is constant and e cancels, as expected.
In Appendix A.2, we show that the axial component of e is the time derivative of the kinematic twist τ , and its normal

projection is the time derivative of the binormal curvature K convected in the material frame. In view of this, we define the
rates of strain for the twisting and bending modes as the axial and perpendicular projections of e = ω′ ,

et(S, t) = ω′(S, t) · t(S, t) (19a)

eb(S, t) = P⊥
(
t(S, t),ω′(S, t)

)
. (19b)

2.6. A geometrical identity for the rate of twisting strain

The rate of strain for the twisting mode appearing in Eq. (19a) can be rewritten as et = ω′ · t = (ω · t)′ − t′ ·ω = v ′ − t′ ·ω.
The derivative of the tangent is given by Eq. (14b) as t′ = π × t = K × t . Permuting the mixed product and using Eq. (14a)
to identify the time derivative of the unit tangent, we find

et(S, t) = ∂v(S, t)

∂ S
+ K (S, t) · ∂t(S, t)

∂t
. (20)

In a previous work [35] focusing on the case of elastic rods, this equation was used to obtain a natural discretization of
twist.
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This equation is at the heart of the centerline/spin representation, which uses the centerline position x(S, t) and the spin
velocity v(S, t) as the primary unknowns. The tangent t and binormal curvature K appearing in the right-hand side can
be reconstructed in terms of the centerline x. Therefore, Eq. (20) defines the rate of twisting strain in the centerline/spin
representation. Note that it couples the twisting degrees of freedom and the centerline degrees of freedom.

Eq. (20) can be seen as an incremental version of the Călugăreanu–White–Füller (CWF) theorem [51–55] which defines
the notion of writhing for a closed curve — for a short review on this theorem, see Refs. [56,57]. Its relevance to the
dynamics of rods has been discussed by several authors: the CWF theorem has been used in the context of supercoiled
DNA [58–61] or polymers [62], and in other contexts such as the dynamics of elastic filaments in a viscous fluid [63,64] or
the mechanics of proteins [65]. Here, we use this Eq. (20) as a starting point to derive our discrete viscous thread model.

2.7. Virtual velocities, virtual rates of strain

We need to rewrite the main formulas obtained so far in order to make explicit the dependences (i) on the current
configuration, denoted by Xt , and (ii) on the velocities u and v . This shall allow us to introduce virtual velocities, denoted
by û(S) and v̂(S). Virtual velocities can be considered as dummy arguments, and are unrelated to the real motion —
in particular the equality ẋ(S, t) = û(S) does not hold. Virtual velocities will make it possible to compute the functional
derivatives of the strain rates with respect to the velocities, that are required for the calculation of the viscous forces by the
method of Rayleigh.

The current configuration Xt is defined by a function of a single variable that maps the arc length S to the centerline
position, Xt(S) = x(S, t). We rewrite Eq. (11) yielding the time derivative of the tangent as ṫ(S, t) = V(Xt; u; S) where the
operator V is defined in terms of a virtual (generic) velocity by

V(X; û; S) = 1

�(S)
P⊥

(
t(S), û′

(S)
)
. (21)

In the right-hand side, the axial stretch � and the unit tangent t are reconstructed from the current configuration
X(S) passed as in argument using Eqs. (7) and (8). Similarly, the angular velocity ω is given by Eq. (17a) as ω(S, t) =
W(Xt; u, v; S) where

W(X; û, v̂; S) = v̂(S) t(S) + t(S) × V(X; û; S), (22)

the rate of stretching strain is given by Eq. (10) as d(S, t) =Ls(Xt; u; S) where

Ls(X; û; S) = t(S) · û′
(S), (23)

the rate of twisting strain is given by Eq. (20) as et(S, t) =Lt(Xt; u, v; S) where

Lt(X; û, v̂; S) = v̂ ′(S) + K (S) · V(X; û; S), (24)

and the rate of bending strain is given by Eq. (19b) as eb(S, t) =Lb(Xt; u, v; s) where

Lb(X; û, v̂; S) = P⊥
(

t(S),
dW(X; û, v̂; S)

dS

)
. (25)

As earlier for � and t , the binormal curvature K appearing in Eq. (24) is reconstructed from the current configuration X(S)

passed in argument, using Eq. (17c). Note that Ls depends on the linear velocity û but not on the spin velocity v̂ . Besides,
Lb depends on the derivatives of the virtual velocities through the total derivative of W appearing in its definition; the
same holds for V and Lt. All the operators V , W , Ls, Lt, Lb introduced above depend linearly on the virtual velocities û
and/or v̂ . The corresponding discrete operators will play a key role in the discrete model.

We have presented the centerline/spin description of the rod, which makes use of the centerline position x(S, t) and
velocity u(S, t), and of the spin velocity v(S, t) as primary unknowns. We are done with the kinematic analysis of the rod,
and now proceed to introduce the viscous constitutive laws.

2.8. Dissipation potentials

The viscous constitutive laws can be introduced using the method of Rayleigh potentials [66]. This approach is first
illustrated in the simple case of a particle having a single degree of freedom x(t). The viscous drag force reads f = −ν u,
where ν is the drag coefficient and u = ẋ the velocity. This force can be obtained by defining the Rayleigh potential Dp(û) =
ν
2 û2, by deriving it with respect to the virtual velocity, and then by inserting the real velocity:

f = −∂Dp(û)

∂ û

∣∣∣∣
û=u

= −ν u = −ν ẋ. (26)

Rayleigh potentials provide a natural discretization of the viscous forces for a discrete viscous thread; a similar approach
has been followed by Batty and Bridson [67] in the context of 3d fluids with free boundaries.
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As illustrated by the example above, the Rayleigh potential expresses the power dissipated by the viscous forces during a
virtual motion. For viscous threads, it has three contributions, corresponding to the stretching, twisting and bending modes
of deformation:

D(x; û, v̂) =Ds(x; û) +Dt(x; û, v̂) +Db(x; û, v̂). (27)

Let us denote the viscous stretching modulus by D(�), the viscous twisting modulus by C(�) and the viscous bending
modulus by B(�),

D(�) = 3μA(�) = D0

�
, C(�) = 2μI(�) = C0

�2
, B(�) = 3μI(�) = B0

�2
. (28)

The expression of D is due to Trouton [14], and that of C and B can be found in [68,9]. Here, μ is the fluid’s dynamic
viscosity, D0 = 3μA0 = 3μ(π a2

0), C0 = 2μI0 and B0 = 3μI0 are the value of the moduli in reference configuration and A0
and I0 are the cross-sectional area and moment of inertia in reference configuration defined in Section 2.3. The dependence
of the area A on the stretch � comes from the conservation of volume in Eq. (13).

We propose the following expressions for the Rayleigh potentials:

Ds(X; û) =
S+∫

S−

D(�(S))

2�(S)

(Ls(X; û; S)
)2

dS (29a)

Dt(X; û, v̂) =
S+∫

S−

C(�(S))

2�(S)

(Lt(X; û, v̂; S)
)2

dS (29b)

Db(X; û, v̂) =
S+∫

S−

B(�(S))

2�(S)

(Lb(X; û, v̂; S)
)2

dS. (29c)

Here S− and S+ denote the Lagrangian coordinates of the endpoints of the thread. Both S− and S+ may depend on time
even though this time dependence is implicit for the sake of readability. In all the expressions above, � is reconstructed
in terms of the first argument X , as earlier. The stretching contribution Ds does not depend on the rotational degree of
freedom v̂ but solely on the centerline velocity û. By the analysis of Section 2.7, Ls, Lt and Lb represent the rates of strain
associated with the three fundamental modes of deformation. Note that they all depend linearly on the virtual velocities,
and as a result the Rayleigh potentials Ds, Db and Dt and D are quadratic forms of their velocity arguments û and v̂; this
quadratic dependence reflects the linear character of the viscous constitutive laws.

In Appendix B.1, we show that the expressions of the Rayleigh potential proposed in Eq. (29) correspond (by the method
of Rayleigh) to the well-established constitutive laws for thin viscous threads, namely (i) Trouton’s law [14] expressing the
tension ns in terms of the viscous stretching modulus D and the Eulerian rate of axial strain dE,

ns = DdE

and (ii) the expression of the internal moment m in terms of the bending modulus B , of the twisting modulus C , and of
the Eulerian rate of strain eE of the twisting and bending modes [15]:

m = [
Ct ⊗ t + B(1 − t ⊗ t)

] · eE,

where 1 denotes the identity matrix.

2.9. Equations of motion

As illustrated by Eq. (26), the viscous force is found by the method of Rayleigh by derivation of the potential with respect
to the virtual velocity. Therefore, the resultant of the viscous stress on the centerline is given by

P v(S, t) = −∂D(Xt; û, v̂)

∂ û(S)

∣∣∣∣
(û,v̂)=(u,v)

. (30a)

The notation in the right-hand side must be understood as follows: we first take the functional derivative of the potential
with respect to its argument û, and later substitute the velocity arguments with their real values, û = u and v̂ = v . This
quantity P v is the resultant of the internal viscous forces, per unit length dS in reference configuration. It includes the
stretching, twisting and bending forces, each contribution being listed in Eq. (27). The force P v depends on the current
centerline shape Xt and on the real velocities u and v , but this dependence is implicit in our notations.
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The stress quantity which is dual to the spin velocity v is the net twisting moment arising from the viscous stress. It is
given by a similar formula,

Q v(S, t) = −∂D(Xt; û, v̂)

∂ v̂(S)

∣∣∣∣
(û,v̂)=(u,v)

. (30b)

In practice, the functional derivatives in Eqs. (30) are computed by casting the first variation of the Rayleigh potential δD
into the form δD = − ∫

(P v · δû + Q v δ v̂)dS . Explicit expressions of P v and Q v are derived in Eq. (B.8) of Appendix B and
are shown to be equivalent to those used in the classical Kirchhoff theory of rods.

The equations for the dynamics of the thread are given by the balance of linear and angular momentum:

ρ A0 ẍ(S, t) = P v(S, t) + P (S, t) (31a)

� J v̇(S, t) = Q v(S, t) + Q (S, t). (31b)

These equations express a balance of momentum, per unit length of the thread dS in reference configuration. The resultant
P v and moment Q v of the viscous forces have been defined in terms of the current positions and velocities by Eqs. (29)
and (30). The quantities P (S, t) and Q (S, t) are the density of external force and of external twisting moment, respectively,
per unit length dS in reference configuration, including the effect of gravity and surface tension. The coefficient ρ is the
volume mass of the fluid, and (ρ A0) and (� J ) are the mass of the thread and its moment of inertia about the tangent,
respectively; both are again measured per unit reference length dS . Here, J is the moment of inertia per unit length ds in
actual configuration, and is given by the usual formula

J (�) =
2π∫
0

∫
|r|<a

r2ρr dr dθ = 2ρ I(�), (32)

in terms of the geometric moment of inertia I defined in Eq. (13). The presence of a factor � in the left-hand side of
Eq. (31b) can be explained by multiplying both sides by dS: this makes appear the moment of inertia � J dS = J ds of a
small segment having length dS in reference configuration and ds in actual configuration.

A classical approximation, proposed by Kirchhoff himself, is to neglect the rotational inertia and set

J = 0, (33)

in the balance of moments (31b). This approximation can be justified by the fact that the kinetic energy associated with
rotational inertia scales like (� J )v2 ∼ �ρa4 (1/t∗)2 for a motion happening on a typical time scale t∗ . By contrast the kinetic
energy associated with translation of the centerline scales like �ρ Au2 ∼ �ρa2(L/t∗)2, where L is the typical length scale of
the motion. The energy of the rotational mode is therefore negligible for slender threads, for which L 	 a. The consequence
is that the rotational inertia is negligible in the thin limit which we consider.

2.10. External loading

The weight of the thread is represented by contributions to P and Q that are denoted by P g and Q g:

P g(S, t) = ρ A0 g, Q g(S, t) = 0, (34)

where g is the acceleration of gravity.
Forces arising due to surface tension are derived by considering another contribution to P and Q , deriving from energy

proportional to the area of the lateral boundaries. First, we express the capillary energy based on an approximation of the
lateral area:

Eγ (x) =
S+∫

S−

γ 2πa
(
�(S)

)
�(S)dS, (35)

where γ is the surface tension, possibly depending on time and position along centerline, and 2πa(�)(�dS) is the lateral
area of a cylinder of radius a and length ds = �dS . Here, we assume slow variations of the thickness along the centerline,
and neglect the small conical angle of the lateral surface.

The capillary force acting on the centerline can be obtained from the first variation dEγ of the capillary energy: using
the definition of a(�) in Eq. (13) and the definition of � in terms of x(S) in Eq. (7), we find

dEγ (x; δx) = [nγ δx]S+
S− −

S+∫
S−

Pγ (S) · δx dS, (36a)
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Fig. 3. Discrete setting: centerline is a polygonal curve. Note that we use subscripts for vertex-based quantities, such as vertex positions, and superscripts
for segment-based quantities, such as segment length �i .

where the bracket denotes the boundary term coming from the integration by parts. The coefficients appearing in this
variation are identified as a net density of force and twisting moment in the interior (Pγ and Q γ ) and an internal force (nγ ):

Pγ (S, t) = ∂nγ (S, t)

∂ S
(36b)

Q γ (S, t) = 0 (36c)

nγ (S, t) = γπa(S, t)t(S, t). (36d)

These capillary contributions are added to those coming from gravity.

2.11. Summary of the smooth model

In our centerline/spin representation, the unknowns are the centerline’s position x(S, t) and velocity u(S, t), and the
spinning velocity v(S, t). In terms of these unknowns, the following kinematic quantities are calculated successively: the unit
tangent t and axial stretch � as explained in Section 2.2, the cross-sectional area A and geometrical moment of inertia I as
explained in Section 2.3, the binormal curvature K as explained in Section 2.4, the linear forms required to compute the
rates of strain V , W , Ls, Lt and Lb as explained in Section 2.7. Then, the constitutive equations are obtained by calculating
the viscous moduli B , C and D and the dissipation potential D as explained in Section 2.8, and then the net viscous force
P v and twisting moment Q v by Eq. (30). When inserted into the equations of motion (31), this yields the linear acceleration
u̇ and the angular acceleration v̇ of the thread.

3. Spatial discretization: discrete viscous threads

In this section, the discrete model of viscous threads is derived in close analogy with the smooth model. Three key ideas
are used. First, we extend the centerline/spin representation to discrete space, and parameterize the rotations with a single
degree of freedom. Second, we introduce a discrete twist based on the geometrical notion of parallel transport. Third, we
derive equations of motion in the discrete setting by variational principles, using discrete Rayleigh potentials.

3.1. Kinematics of centerline

We start by defining discrete quantities such as centerline position, linear and angular velocities and rates of strain. Time
discretization will be introduced later in Section 4.

The centerline is discretized using (n + 2) vertices, whose positions are denoted by x0(t), x1(t), . . . , xn+1(t), as shown
in Fig. 3. In the initial configuration of the thread, the vertices are uniformly spaced; during the simulation new vertices
are continuously added from one end and captured from the other end, as explained in Sections 4.3 and 4.4. The vertex
positions are collected into a generalized coordinate vector X(t), whose size is 3(n + 2):

X(t) = {
x0(t), . . . , xn+1(t)

}
. (37)

We shall set up a force, assign a mass, and integrate the fundamental law of dynamics at each vertex xi(t). The thin thread
behavior is achieved by means of discrete viscous force and twisting moment, which by design converge to P v(S, t) and
Q v(S, t) in the smooth limit.

The segment joining vertices xi and xi+1 is denoted by

T i(t) = xi+1(t) − xi(t), (38)

as shown in Fig. 3. Following classical conventions, we use subscripts for indices 0 � i � n + 1 associated with vertices,
and superscripts for indices 0 � i � n associated with segments. Since the vertex index i plays the role of the Lagrangian
coordinate S , the segment vector T i(t) defined above is the discrete equivalent of the material, non-unit tangent T (S, t)
defined in Eq. (6). More accurately it is, like many other discrete quantities introduced next, an integrated quantity: the
discrete tangent is approximately the smooth tangent times the discretization length.

The discrete segment length �i(t) and unit tangent ti(t) are defined by formulas similar to Eqs. (7)–(8)
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�i(t) = ∣∣T i(t)
∣∣ (39)

ti(t) = T i(t)

�i(t)
. (40)

We define the vertex velocities by

ui(t) = dxi(t)

dt
. (41)

The rate of strain measuring the stretching of a segment T i reads:

di(t) = Li
s

(
X(t); ui(t), ui+1(t)

)
, (42a)

where

Li
s(X; ûi, ûi+1) = ti · (ûi+1 − ûi). (42b)

This definition extends the smooth equation (10) in an obvious way, and warrants di(t) = �̇i(t).
The time derivative of the unit tangent is given in terms of the vertex velocities by a geometrical formula analogous

to Eq. (11), namely ṫ i(t) = V i(X; ui, ui+1), where the discrete operator V i attached to segment T i is defined for arbitrary
velocities by

V i(X; ûi, ûi+1) = 1

�i
P⊥

(
ti, ûi+1 − ûi

)
. (43)

To define the bending strain, we shall later need vertex-based tangents. The latter can be defined in several ways that
are all equivalent in the smooth limit, and we opt for one that preserves the unit character of the tangent, namely

t̃ i(xi−1, xi, xi+1) = ti−1 + ti

|ti−1 + ti | . (44)

The tilde notation is used here and in several other places when we introduce vertex-based versions of quantities that are
primarily defined at segments, and vice-versa.

Similarly, there are several possible definitions for the discrete binormal curvature vector. A possible definition is:

K i(t) = ti−1 × ti

1
2 (1 + ti−1 · ti)

. (45)

This particular one emerges in the calculation of the discrete twist, see the forthcoming Eq. (50b). The vector K i is an inte-
grated measure of the smooth binormal curvature vector K (S, t) defined in Eq. (17c): the denominator in Eq. (45) converges
to 1 in the smooth limit where ti−1 ∼ ti ∼ t(S, t), while the numerator is equivalent to ti−1 ×ti ∼ ti−1 ×(ti −ti−1) ∼ K (S, t)�̃i

where �̃i is the length of the Voronoi cell around vertex xi , defined below in Eq. (47).

3.2. Incompressibility: radius and related quantities

Each segment T i carries a volume of fluid V i and a mass of fluid mi . Those quantities are initialized based on the
prescribed initial segment length, radius and mass density of the fluid. They are conserved during the simulation, except in
the case of mesh subdivision, as discussed in Section 4.5. As in the smooth case we use incompressibility to reconstruct the
local radius ai(t) and cross-sectional area Ai(t), assuming a cylindrical segment geometry:

Ai(t) = V i

�i(t)
, ai(t) =

(
Ai(t)

π

)1/2

. (46)

The length �̃i of the Voronoi region near a given vertex is introduced as follows. We leave this length undefined at the
end vertices, i = 0 and n + 1. For an interior vertex xi with 1 � i � n, it is the curvilinear distance between the midpoints
of the adjacent segments, measured along the polygonal line traced out by the vertices:

�̃i(t) = �i−1(t) + �i(t)

2
for 1 � i � n. (47)

This is a vertex-based discretization length, as opposed to the original segment-based discretization length � j .
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3.3. Material frame, angular velocity

In the discrete case, we decide that the orthonormal triads (di
1,di

2,di
3) live on the segments, like the unit tangent ti . This

allows the condition of compatibility in Eq. (15) to be easily extended to the discrete case:

di
3(t) = ti(t). (48)

Repeating the argument of Section 2.4, one can show that the angular rotation ωi of the material frame can be decomposed
as ωi(t) =W i(X; ui, ui+1, vi), where the operator W i for reconstructing material rotation is defined by:

W i(X; ûi, ûi+1, v̂ i) = v̂ iti + ti × ûi+1 − ûi

�i
. (49)

The quantity vi(t) is the spin velocity, as depicted in Fig. 3. In our discrete centerline/spin representation, rotations are
represented by assigning a degree of freedom vi to each segment.

3.4. Rate of twisting strain based on parallel transport

In Appendix C.1, we derive a discrete notion of twist τi for a polygonal line having an orthonormal frame attached to
each segment, that is adapted in the sense of Eq. (48). As in our previous work [35] twist is defined by difference with the
geometrical notion of discrete parallel transport along the centerline: the material frames di−1

j and di
j adjacent to vertex xi

are mapped one to another by parallel transport plus a rotation of angle τi about the tangent — see Eq. (C.8). This angle τi
is our discrete notion of twist.

The rate of strain for the twisting mode is defined at the vertices in terms of the twist angle by et
i = τ̇i . This is analogous

to the smooth case, see Eq. (A.3a) in Appendix A. The expression of τ̇i in our centerline/spin variables is worked out in
Eq. (C.14):

et
i = Lt

i

(
X; ui−1, ui, ui+1, vi−1, vi), (50a)

where the operator for reconstructing the rate of twisting strain is defined by

Lt
i

(
X; ûi−1, ûi, ûi+1, v̂ i−1, v̂ i) = v̂ i − v̂ i−1 + K i · V

i−1(X; ûi−1, ûi) + V i(X; ûi, ûi+1)

2
. (50b)

Note the similarity with the smooth rate of strain et(S, t) in Eq. (24). The second term in the right-hand side of Eq. (50b)
has a geometrical origin. It captures the change of parallel transport resulting from a perturbation to the centerline, an
effect that was dubbed holonomy in our previous work. This term is responsible for the coupling of centerline motion with
the twisting mode, a phenomenon which appears to be geometrical in essence.

3.5. Rate of change of bending strain

By Eq. (C.13), the rate of strain of the twisting mode et
i is the tangent projection of the gradient (ωi − ωi−1). In view of

the smooth equations (25), we define the rate of strain eb
i of the bending mode as the perpendicular projection of the same

vector,

eb
i = Lb

i

(
X; ui−1, ui, ui+1, vi−1, vi), (51a)

where

Lb
i

(
X; ûi−1, ûi, ûi+1, v̂ i−1, v̂ i) = P⊥

(
t̃ i,W i(X; ûi, ûi+1, v̂ i) −W i−1(X; ûi−1, ûi, v̂ i−1)). (51b)

In the right-hand side above, the operator W i serves to reconstruct the material rotation ωi : in the case of a real motion,
eb

i =Lb
i = P⊥(t̃ i,ω

i − ωi−1), which appears to be consistent with the smooth equation (25).
Note that we could multiply the right-hand side of Eq. (51b) by an arbitrary factor h(ϕi) converging to h → 1 in

the smooth limit ϕi → 0. This would define an alternative discrete bending model, equivalent to ours in the smooth
limit.

3.6. Generalized velocity

In our centerline/spin representation, the generalized velocity is a vector of dimension 4n + 7, defined by collecting the
linear velocities of the vertices, and the angular (spin) velocities of the segments:

U (t) = {
u0(t), v0(t), u1(t), v1(t), . . . , vn(t), un+1(t)

}
. (52)
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This representation is inspired from the centerline/angle representation introduced by Langer and Singer in the context of
elastic rods [57]. By contrast with these authors, who define the orientation of the cross-section incrementally with respect
to the arc length S , we define it incrementally with respect to time t using the spinning velocity v: this makes the matrix
governing the dynamics of the thread sparse, as we shall see.

The generalized velocity vector U (t) is larger than the generalized coordinate X(t) introduced in Eq. (37), as the latter
carries no information about frame rotation. Mapping of the indices in X and U is achieved using a projection operator
defined as

Πn =
n+1∑
i=0

2∑
j=0

δ3i+ j ⊗ δ4i+ j. (53)

Here Πn is a matrix of size (3n + 5) × (4n + 7), defined with the convention that vector indices start at 0. The index i runs
over vertices, the index j over space directions, and δk represents the vector whose entries are all 0, except for the k-th
entry whose value is 1. The values k = 3i + j and k = 4i + j appearing in subscript are the numbering of the translational
degree of freedom for vertex i in direction j in X , and in U , respectively. The generalized velocity and positions are then
connected by the equation

Ẋ(t) = Πn · U (t), (54)

which we will use in the implementation to update positions from the velocities.

3.7. Dissipation potentials

As in the smooth case, the Rayleigh potential is defined in terms of a virtual velocity Û = {û0, v̂0, û1, v̂1, . . . , v̂n, ûn+1},
which is not a function of time and is not related to real positions through Eq. (54).

The discrete Rayleigh potentials extend the smooth ones defined in Eqs. (29):

Ds(X; Û ) = 1

2

∑
0�i�n

Di(Li
s(X; ûi, ûi+1)

)2
(55a)

Dt(X; Û ) = 1

2

∑
1�i�n

Ci
(Lt

i

(
X; ûi−1, ûi, ûi+1, v̂ i−1, v̂ i))2

(55b)

Db(X; Û ) = 1

2

∑
1�i�n

Bi
(Lb

i

(
X; ûi−1, ûi, ûi+1, v̂ i−1, v̂ i))2

. (55c)

The stretching contribution involves a sum over all segments, but the sums in the twisting and bending contributions is
restricted to interior vertices: the strain rates Lt

i and Lb
i are not defined on the extremal vertices.

The total Rayleigh potential is defined by summing up these contributions:

D(X; Û ) =Ds(X; Û ) +Dt(X; Û ) +Db(X; Û ). (56)

In Eqs. (55), the discrete moduli are defined by analogy with the smooth moduli in Eqs. (28),

Di = 3μi Ai

�i
, Ci = 2 [μ̃ I]i

�̃i
, Bi = 3 [μ̃ I]i

�̃i
, (57)

where μi is the fluid’s dynamic viscosity which is stored at segments like other fluid properties, Ai is the segment’s
cross-sectional area reconstructed by Eq. (46), �i the segment length given by Eq. (39) and �̃i the length of the Voronoi
cell around an interior vertices given by Eq. (47). The factors �i and �̃i have been included to warrant convergence to the
smooth Rayleigh potentials, which are defined by curvilinear integrals. The factor [μ̃ I]i appearing the twisting and bending
moduli is defined at the vertices by linear interpolation over the adjacent segments:

[μ̃I]i = 1

2

μi−1 (Ai−1)2 + μi(Ai)2

4π
. (58)

This definition is motivated by the fact that I = A2/(4π) in the smooth case, as shown by Eq. (12). Note that the value of the
ratio Bi/Ci = 3/2 between the bending and twisting moduli is preserved: in the smooth case, this relation is a consequence
of the incompressibility.
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Fig. 4. Band structure of the discrete Rayleigh potential D(X). Colors reveal the contributions coming from the stretching, twisting and bending modes.

3.8. Matrix representation of the Rayleigh potential

One of the main task in each time step is the calculation of the Rayleigh potential D(X, Û ), whose gradient yields the
viscous forces and moments. It is computed symbolically with respect to the argument Û , which allows an implicit evalu-
ation of the forces. The potential D has quadratic dependence on the virtual velocity Û , as it represents linear constitutive
laws: it is represented by a symmetric matrix D(X):

D(X; Û ) = 1

2
Û ·D(X) · Û . (59)

At each time step, the matrix D(X) is computed as follows, given the configuration of the centerline X at the start of

the time step. The unit tangents ti are computed using Eqs. (38)–(40). At each vertex xi , the rate of strain Li
s for the

stretching mode, which depends linearly on the symbolic velocity Û , is represented as sparse vector, denoted by Li
s(X),

such that Li
s(X; Û ) = Li

s(X) · Û . This sparse vector is built directly from Eq. (42b): it has six non-zero entries, and is filled
with the components of the tangent ti at the three slots corresponding to the downstream vertex ûi+1, and with minus
the components of the same tangent at the three slots corresponding to the upstream vertex ûi . The other linear forms are
computed similarly: first, the quantities �i , t̃ i and K i are reconstructed from the current centerline X using Eqs. (39), (44)
and (45). Next, we successively use Eqs. (43), (49), (50b) and (51b) to compute the sparse tensors V i(X), W i(X), Lt

i(X) and

Lb
i (X) representing the linear forms V i(X; ·), W i(X; ·), Lt

i(X; ·) and Lb
i (X; ·), respectively.

To assemble these linear forms into the Rayleigh potential, we first compute the discrete viscous moduli Di , Ci and Bi in
the current configuration X : we use the incompressibility to reconstruct the area Ai and moment of inertia I i , as explained
in Section 3.2, and then use the definitions of the discrete moduli in Eqs. (57)–(58). The sparse matrix representation of the
discrete Rayleigh potential D(X) is then obtained from Eqs. (55) as

D(X) =
∑

0�i�n

Di(X)Li
s(X) ⊗ Li

s(X)

+
∑

1�i�n

[
Ci(X)Lt

i(X) ⊗Lt
i(X) + Bi(X)

(Lb
i (X)

)T · (Lb
i (X)

)]
(60)

where the successive terms are the stretching, twisting and bending contributions, respectively. Thanks to the ordering
conventions for the velocity Û , the discrete Rayleigh potential D(X) is a band matrix, as illustrated in Fig. 4.
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3.9. Constitutive law

The generalized viscous force F v and the generalized external force F collect the force resultants on the vertices P i , and
the twisting moments Q i on the segments using the same ordering convention as in the generalized velocity U :

F v = (
P v

0, Q 0
v , P v

1, . . . Q n
v , P v

n+1

)
(61a)

F = (
P 0, Q 0, P 1, . . . Q n, Pn+1

)
. (61b)

Explicit expressions of the external force F representing gravity and surface tension are derived in Section 3.11. The discrete
viscous force is given by the following constitutive law, by the method of Rayleigh:

F v(X, U ) = −∂D(X, Û )

∂ Û

∣∣∣∣
Û=U

= −D(X) · U . (62)

3.10. Discrete equations of motion

We introduce the generalized mass matrix, which is diagonal, based on the same ordering conventions,

M = diag
(
m̃01, �0 J 0,m̃11, . . . , �n Jn,m̃n+11

)
, (63a)

where 1 represents the unit matrix in 3 dimensions. Here, m̃i is the vertex-based mass, defined as one half the sum of the
mass of the segments adjacent to vertex xi :

m̃i =
∑

max(i−1,0)� j�min(i,n)

m j

2
. (63b)

For interior vertices, this is the average of the masses of adjacent segments; for terminal vertices, however, there is only
one adjacent segment. The vertex mass m̃i does not change over time, unless the mesh gets refined. In Eq. (63a), J i is the
moment of inertia of the cylinder attached to segment T i in actual configuration, per unit length, defined by J i = 2ρ i I i =
mi

V i
(Ai)2

2π where ρ i = mi/V i is the mass density of segment i. Our simulation tool has two modes: one in which this complete

expression of J i is used, and another one in which rotational inertia is neglected:

J i = 0. (63c)

It follows from the classical scaling argument given at the end of Section 2.9 that rotational inertia has a negligible effect
on the motion of a thin thread. We have checked that this is the case in our simulations. All our validation examples shown
later have been produced with zero rotational inertia.

The discrete form of the equations of motion (31) writes M · U̇ (t) = F v(X(t), U (t)) + F (t): after inserting the constitutive
law (62), we have

M · U̇ (t) = −D(X) · U + F (t). (64)

Recall that the position is updated by Ẋ(t) = Πn · U (t) according to Eq. (54).

3.11. Discrete expressions of external forces: gravity and surface tension

The weight of the thread is taken in account by setting

P g
i = m̃i g Q i

g = 0 (65)

in the discrete equations of motion. Here m̃i is the mass attached to a vertex, defined in Eq. (63b), and g the acceleration
of gravity.

The discrete surface tension model is based on a capillary energy proportional to the lateral area of the thread,

Eγ (X) =
n∑

i=0

γ i Σ i(X), (66)

where γ i is the fluid’s surface tension at segment i. The lateral area Σ i of segment i is calculated by approximating it as
a cylinder, as sketched in Fig. 5. This is much simpler than approximating them as truncated cones, as we did in previous
work [41], and yields equivalent results in the limit of a thin thread. The lateral area of the cylinder joining vertices xi and
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Fig. 5. Discrete surface tension is based on a cylindrical representation of the fluid attached to segments.

xi+1 reads

Σ i = 2πai�i = 2
√

π V i�i, (67)

after we have used the definition of the volume V i = π(ai)2�i . Its gradient reads ∇xi Σ
i = −( π V i

�i )1/2ti = −πaiti and

∇xi+1Σ
i = +( π V i

�i )1/2ti = +πaiti . The discrete capillary force at a vertex is given by minus the gradient of the capillary
energy (66) with respect to vertex positions,

Pγ
i =

⎧⎪⎪⎨
⎪⎪⎩

+n0
γ tt

0 if i = 0

−nn
γ tt

n if i = n + 1

+ni
γ tt

i − ni−1
γ t ti−1 if 1 � i � n

(68a)

Q i
γ = 0, (68b)

where we have introduced the capillary tension force

ni
γ t = πγ iai . (68c)

This capillary tension is the overpressure in the fluid (γ i/ai) caused by the curvature 1/ai of the interface according to the
Young–Laplace law, times the cross-sectional area Ai = π (ai)2. The special expressions of the capillary force on the terminal
vertices, corresponding i = 0 or i = n +1 in Eq. (68a), represents the contribution from the cap closing the cylindrical thread
at its endpoints — the same effect was captured by the boundary terms in the smooth Eq. (36a). This discrete model for
surface tension is validated in Section 5.3.

Contact of the thread with obstacles will be treated using a kinematic method presented in Section 4.3, and not by
penalty: there is no need to derive the expressions of the forces of contact.

4. Time discretization, numerical implementation

4.1. Boundary conditions and kinematic constraints

Boundary conditions are enforced by constraining degrees of freedom. We deal with the case of clamped ends, where
the velocities u0 and u1 of the first two vertices and the angular spinning velocity of the first segment v0 are imposed by
the motion of the clamp — a similar condition holds at the other clamped end. Such kinematic constraints are handled by
writing the velocity U t+ε at the end of the time step as a function of an unconstrained velocity Y :

U t+ε = B · Y + B ′, (69)

where t is the time at the beginning of the time step, ε is the time step duration, and Y collects the velocities of the
unconstrained degrees of freedom. This vector Y , whose size r may change over time as kinematic constraints are created
or destroyed, is the main unknown of the time step.

The matrix B and the vector B ′ in Eq. (69) are constructed as follows. Let b be the strictly increasing numbering of the
unconstrained degrees of freedom, b(0) < b(1) < · · · < b(r − 1), active at the end of the time step. The matrix B dispatches
the unconstrained degrees of freedom stored in Y into the original velocity vector U t+ε . It is sparse, of size (4n + 7)× r, and
is filled with ones at entries Bb(i),i = 1 for 0 � i � r − 1, and with zeros elsewhere. The vector B ′ is filled with the known
velocities of the constrained degrees of freedom, by fetching the motion of rigid bodies that fix the motion of the clamped
ends. The other entries of B ′ correspond to unconstrained degrees of freedom and are set to zero by convention. As a result
we have BT · B ′ = 0.

As an illustration, the case of no active kinematic constraint is handled by setting r = 4n + 7, b(i) = i, B ′ = 0, and B = 1

is the square identity matrix. The case of a viscous thread clamped at both ends with imposed translational velocities u1
clamp

and u2
clamp, and twisting angular velocities v1

clamp and v2
clamp is handled by
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Require: xi(t), ui(t), vi(t) {initial positions and velocities}
Require: ε {time step}
Require: mi , V i , μi , γ i {fluid properties}
Require: B and B ′ {boundary conditions}
1: assemble Xt and U t {Eqs. (37) and (52)}
2: compute D(Xt ) {Rayleigh potential, Section 3.8}
3: compute M {Eqs. (63)}
4: compute F (t) {external force, Section 3.11 and Eq. (61b)}
5: solve for Y {Eq. (73)}
6: reconstruct U t+ε {Eq. (69)}
7: update ui(t + ε), vi(t + ε) {Eq. (52)}
8: update xi(t + ε) {Eq. (74)}

Algorithm 1: The dynamical sequence: this part of the time step is concerned with updating positions and velocities by
integrating the equations of motion.

r = 4n + 7 − 2 × 7 = 4n − 7 (70a)

b(i) = i − 7 (70b)

B ′ = (
u1

clamp, v1
clamp, u1

clamp,0,0, . . . ,0,0, u2
clamp, v2

clamp, u2
clamp

)
. (70c)

In the presence of kinematic constraints, the equations of motion need to be projected onto the set of unconstrained
degrees of freedom. This is achieved by left-multiplying both sides of Eq. (64) by BT :

BT · M · U̇ (t) = BT · (−D(
X(t)

) · U (t) + F (t)
)
. (71)

4.2. Time-stepping: dynamical sequence

At each time step, the updated position Xt+ε and velocity U t+ε must be determined from the actual position Xt and
velocity U t . We discretize Eq. (71) in time as follows: the viscous force (−D · U ) is evaluated implicitly with respect to
velocity but explicitly with respect to position, while the other forces F are evaluated explicitly,

BT · M · U t+ε − U t

ε
= BT · (−D(Xt) · U t+ε + F (t)

)
. (72)

In this sense, the scheme is semi-implicit. This choice combines excellent robustness, as demonstrated later on by the
validation examples, and ease of implementation.

The final form of our dynamic update rule is obtained by inserting the unconstrained velocities Y defined by Eq. (69)
into equation above:[

BT · (M + εD(Xt)
) · B

] · Y = BT · (ε (−D(Xt) · B ′ + F (t)
) − M · (B ′ − U t

))
. (73)

This dynamic update is a linear equation for the unknown velocity Y : it requires only a linear solve. The matrix inside the
square brackets in the left-hand side is symmetric, positive definite for any value of the time increment ε > 0, and has the
same band structure as D, see Fig. 4. As a result, the linear problem for Y can be solved using efficient and robust solvers.
In Eq. (73), we recall that B and B ′ encode kinematic constraints, M is the mass matrix, D the Rayleigh potential capturing
viscous stress, F (t) the external loading and U t the velocity at the start of the time step.

The external force F (t), which includes in particular the effect of capillary forces, has been treated explicitly. We have
tested an implicit treatment of surface tension but have not observed any significant improvement on the robustness of the
simulation: the explicit treatment of surface tension is not the most limiting factor.

Once the linear equation for Y has been solved, the generalized velocity U t+ε is reconstructed by means of Eq. (69).
Positions are then incremented using a discrete version of Eq. (54),

Xt+ε = Xt + εΠn · U t+ε . (74)

We call dynamical sequence the part of the time step concerned with integrating the equations of motion in time. This
involves constructing and solving Eq. (73), and yields the update of velocities U t+ε , and of positions Xt+ε by Eq. (74). The
dynamical sequence is summarized in Algorithm 1. The other part of the time step, detailed in the following sections, takes
care of the interactions of the thread with its environment, including collisions and creation of vertices to represent inflow
boundary conditions.

4.3. Fluid container

We consider viscous threads obtained by continuously extruding fluid from a container: in the present section, we
explain how this inflow boundary condition is implemented. In the experiments, it is achieved by a syringe actuated by a
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Fig. 6. The thread is formed by extruding fluid from a container at a prescribed velocity. (a) Physical model. (b) Numerical model. Clamped boundary
conditions are enforced by prescribing the position and velocities of the two top-most vertices (filled disks), and blocking the rotation of the first segment
joining them. Open circles denote unconstrained vertices and dashed curves are the timelines of the vertices. The first two vertices are kept at a fixed
position with respect to the container, and mass is continuously added into the second segment. A new vertex is periodically created from top (vertex
labeled ‘2’ appearing at time t + 2ε).

step motor, controlling the volume rate Q c of the fluid. Let dc be the diameter of the container, as depicted in Fig. 6a, and

Ac = π dc
2

4 be the area of the opening. The imposed volume rate sets an ejection velocity Uc = Q c/Ac of the thread relative
to the container.

We found that a good discretization of the container is crucial to warrant convergence and reproducibility of the overall
behavior of the thread. The discretization proposed here captures the subtle patterns produced by the viscous sewing
machine at large fall heights [42]. We tried simpler implementations of the container, but found that they induce spurious
oscillations of the thread and failed at reproducing the correct sewing machine patterns.

Our discrete container model is sketched in Fig. 6b. At all times, two vertices are located inside the container, as denoted
by the filled disks in the figure. At the beginning of each dynamic step, their velocity is constrained to the value u1

clamp =
(żc(t) − Uc) ez , where zc(t) is the prescribed height of the container as a function of time and ez is the vertical unit
vector pointing upwards. The rotation of the segment joining these first two vertices is blocked, v1

clamp = 0. These clamping
conditions are enforced by the method of Section 4.1, see Eq. (70).

After the dynamic step, the position of the two top-most vertices is systematically reset, so as to make the second
vertex coincide with the opening of the container, and to make the first vertex lie at a distance �c above it, where �c is
the parameter determining the mesh size. At each time step, the extrusion of the fluid by the container is captured by
increasing the volume of fluid of the second top-most segment by (ε Q c) and, correspondingly, its mass by (ρ ε Q c), where
ε is the time step. Whenever the volume of this second segment exceeds the value (Ac �c), this segment is split, and a new
vertex is inserted between the second and third vertices; the fluid material in ecess is then assigned to the new segment, as
sketched in Fig. 6b. As a result, new segments are periodically emitted just below the container, with an initial length set by
the discretization parameter �c. Even though all segments were created equal, their length is inhomogeneous along the thread
as a result of the stretching by gravity, and of the optional adaptive mesh subdivision which is discussed later.

4.4. Collisions on a hard surface

Falling under its own weight, the thread generally ends up hitting a surface, which can be at rest (as in the steady
coiling geometry of Section 5) or in motion (as in the sewing machine experiment of Section 6.2). We explain here how
this free boundary is handled. The thread is assumed to stick perfectly to the surface, and gets carried away by it when it
is in motion. This motion is prescribed before the start of the simulation: two-way coupling of the thread and the obstacles
is not considered.

Detection of collisions with the surface is done by comparing the distance of vertices to the surface, to the radius ai of
the adjacent segments defined in Eq. (46). In all the examples shown, the surface is flat.

Two methods can be used to respond to collisions. The user must pick one at the start of the simulation through a
parameter c. The simple ‘capture and continue’ mode (c = cc) is sufficient in the simple geometry of steady coiling, but we
found that the more accurate ‘time roll-back’ (c = rb) mode is required in order to correctly predict the complex sewing
machine patterns on a moving surface.

4.4.1. ‘Capture and continue’ mode
In the ‘capture and continue’ mode (c = cc), we walk along the thread in the descending direction, starting from the

nozzle, and check for collisions with the ground. In the case where new collisions are detected, the colliding vertex nearest
to the nozzle is found, and the thread is cut at the next vertex: all the vertices beyond the cut point are removed from
the simulation at subsequent times, and are passively advected by the floor. The two terminal vertices that are retained are
subjected to a clamped boundary condition, see Eq. (70): u2

clamp is set by the motion of the floor and the rotation is blocked,

v2
clamp = 0.

We found that this simple response method correctly predicts simple deposition patterns, but induces large, spurious
fluctuations of the acceleration in some circumstances. These oscillations are caused by the delay in transferring the ver-
tical momentum following a collision: this transfer occurs during the time step following the collision, when the position
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constraints start to take effect. With this method, the thread penetrates into the obstacle by a small irregular depth, pro-
portional to the time step duration, which amounts to assign an unphysical rugosity to the surface.

4.4.2. ‘Time roll-back’ mode
The oscillations were removed by using time roll-back, a technique which allows for a more accurate handling of col-

lisions. When roll-back is used (c = rb), we check for collisions after every time step: whenever a new collision occurs,
the time is rolled back to the start of the time step and the time step is discarded. A new, shorter time step is attempted.
Its duration is such that it ends at the collision time estimated from the previous iteration: roll-back is always used in
combination with time adaptation. In addition, the motion of the colliding vertices are constrained in the new time step,
in such a way that they come in contact with the obstacle at the end of the time step. Roll-back can be viewed as an
iterative predictor–corrector or iterative constraint refinement method [69]. A new unexpected collision may indeed take
place during the second tentative time step, in which case a third attempt is done, etc. A list of expected collisions is kept
and updated each time a time step is discarded.

Roll-back removes the two main limitations of the straightforward ‘capture and continue’ implementation: it suppress
the delay in transferring momentum from the obstacle to the thread, and makes the thread land exactly at the surface
of the obstacle, thereby removing the unwanted rugosity. We found that roll-back suppresses the spurious oscillations in
acceleration very effectively.

4.5. Optional adaptive mesh subdivision

In the experiments of Morris [13], which we reproduce in Section 6.2, gravity stretches the thread by a factor which
can be as large as 10 to 100. In the absence of mesh refinement, the segments in the bottom part of the thread would be
considerably longer than those at the top. A good spatial resolution is needed at the bottom in order to resolve the coil
having a small radius. To achieve optimal performance, we have implemented mesh refinement by subdivision. This mesh
refinement is optional, and is only used in the sewing machine example of Section 6.2.

Mesh subdivision is implemented as follows. The user specifies a refinement criterion through a function f (�, �0, z)
having boolean values, which depends on the current length � of a segment, on its initial length �0 and on its current
elevation z — an example is provided in Eq. (77). At the end of every dynamic step detailed in Algorithm 1, the segments
such that f is true are marked as needing subdivision; in a second pass, those segments are actually subdivided. This
subdivision is carried out by inserting a new vertex, and splitting the segment. The position xi and velocity ui of the
new vertex are calculated by an interpolation of order 4 based on the positions and velocities of its neighboring vertices.
These neighboring vertices are always considered in their state before the subdivision has started: in the case of concurrent
subdivision of adjacent segments, this warrants that the result is independent of the order in which the marked segments
are processed. The mass m j stored in the original segment is equally split among the two subsegments. The viscosity μ j ,
surface tension γ j , spinning velocity v j of the new subsegments are all computed by an interpolation of order 2 based
on the values of the former segment and of its neighbors. Finally, the volume V j of the subsegments is computed by
first considering an interpolation of the cross-sectional area Ai at order 4, which is then multiplied by the length of the
subsegment. This procedure and the interpolation orders have been chosen in such a way that the viscous twisting and
bending forces, which depend on the derivatives of order up to four of the positions, remain smooth upon subdivision.

4.6. Summary of a time step

The full time step is recapitulated in Algorithm 2. To avoid dealing with the initial impact of the thread onto the obsta-
cle, the initial configuration of the thread is clamped into the floor, and we use the clamp-clamp boundary conditions of
Eq. (70c) at all times in all the examples; the influence of this initial configuration is limited to a short transient period.

5. Validation in a steady coiling geometry

We proceed to validate our discrete model, verify our implementation, and check convergence in the smooth limit.
We consider the steady coiling motion of a viscous thread stretched by gravity and impinging on a surface at rest, as
shown in Fig. 7b. Our simulation results are compared to reference solutions kindly provided by N. Ribe, which are based
on numerical continuation of the time-independent problem expressed in the co-rotating frame [9], and solved using the
AUTO-07 software [70].

5.1. Validation of bending, stretching, gravity, inertia and collisions

The following set of parameters are used for validation and verification: the fluid’s dynamical viscosity μ = 0.2 and mass
density ρ = 5 × 10−4, the acceleration of gravity g = 9.81, the area Ac = 6.44 × 10−3 of the circular outlet of the container
and the fluid’s volume rate Q c = 3.96 × 10−3. The surface tension γ is set to zero until we validate surface tension in
Section 5.3. The floor is at rest.
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Require: xi(t), ui(t), vi(t) {initial positions and velocities}
Require: ε {time step}
Require: mi , V i , μi , γ i {fluid properties}
Require: Ac , Q c , �c {container properties}
Require: c {collision mode}
Require: f {subdivision criterion}
1: compute B and B ′ {clamp-clamp boundary conditions, Eq. (70)}
2: do dynamical sequence {Algorithm 1}
3: enforce inflow boundary condition {container, Section 4.3}
4: treat collisions with the floor {depends on c, Section 4.4}
5: optionally, refine by subdivision {based on criterion f , Section 4.5}
6: update floor position {motion of the moving belt is prescribed}

Algorithm 2: Outline of a time step, which includes the dynamic sequence, the interaction with the container and the
floor, and the optional mesh subdivision. Note that in the time roll-back mode (c = rb), this algorithm may abort at step 4
if new collisions occur, as explained in Section 4.4.2: in that case, the time step is discarded, and a new one is attempted
using a smaller value of ε .

Three dimensionless groups characterize the properties of the fluid and the container [11]:

Π1 =
(

ν5

g Q c
3

)1/5

, Π2 =
(

νQ c

g dc
4

)1/4

, Π3 = dc
2γ

Q cμ
, (75)

where ν = μ/ρ is the kinematic viscosity; the diameter of the container’s circular opening dc and the extrusion velocity
Uc = Q c/Ac have been defined in Section 4.3. The numerical values of the dimensionless groups are Π1 = 7000, Π2 = 7 and
Π3 = 0 for the set of parameters listed above. This corresponds to significant stretching: the radius decreases by a factor of
order 2 during the course of the descent for the range of heights considered below.

Based on the acceleration of gravity g and on the kinematic viscosity ν , one can define a natural length scale L∗ and a
natural time scale T ∗ by

L∗ =
(

ν2

g

)1/3

, T ∗ =
(

ν

g2

)1/3

. (76)

Using the above numerical values, L∗ = 25.36 and T ∗ = 1.61; these scales are used to make the simulation results dimen-
sionless when comparing to the reference solution.

Two additional discretization parameters are needed in the simulation: the initial segment length �c, introduced in
Section 4.3, and the time step ε . We take �c = 0.025 and ε = 0.02. Note that the average number of particles emitted per
time step is (ε Uc/�c) = 0.49: a good trade-off between accuracy and efficiency requires that this number is of order 1.
Collisions with the floor are treated using the simple ‘capture and continue’ method (c = cc). Mesh refinement is disabled
( f always evaluates to ‘false’).

N. Ribe provided his reference solution [9] to us in the form of data for the coiling radius or the coiling frequency, as
a function of the fall height. To produce simulation data which can be compared to this reference solution, a range of fall
heights H(t) is swept in a single simulation run. The motion of the container is prescribed in a sequence of up to three
phases. At initial time t = 0, it is placed at height H0. It is left still until time t = t1, when the steady coiling is established.
Then, the container is moved upwards at a prescribed velocity żc = V c that is much smaller than the extrusion velocity Uc,
until time t = t2. In a last phase, from time t = t2 to the end of the simulation, t = tf , the container is moved slowly
downwards at a velocity żc = −V c. We use t1 = 30, t2 = 1530, tf = 3030 and V c = 0.02, which is 30 times slower than the
extrusion velocity Uc, and H0 = 1.25.

Validation results are shown in Fig. 7. Most of the time, the simulation lays down a thin curve (brown and blue) in
the plane (H, R), where R = (x2 + y2)1/2 is the distance of the point of contact of the thread with the floor, to the axis
passing through the nozzle. This indicates a steady coiling regime. When the container is moved up (brown curve), the
simulated radius R follows closely the reference solution, until the latter folds back onto itself. The portion of the reference
curve immediately past the fold point is known to be unstable [11]. The simulation then goes to a transient regime, labeled
‘C’ in Fig. 7a and shown in Fig. 10. It then settles to a different coiling mode having a smaller radius. A series of such
bifurcations is observed in the simulation, a behavior that has been observed in experiments too [11]. A similar sequence
of transitions is observed when the container is moved down. As multiple coiling solutions are in competition, a hysteretic
behavior is observed: the transition from the second largest coiling radius to the largest one occurs at a fall height ‘D’ when
the container is moved downwards, which is smaller than the fall height ‘C’ corresponding to the opposite transition (when
the container was moved upwards): see Figs. 7 and 10.

In addition, we observe the occurrence of a folding mode in the interval 0.72 > H/L∗ > 0.47 when the container moves
down; the competition between the coiling and folding modes is discussed in Ref. [71]. The small gap between the blue
and brown curves in the left part of Fig. 7a can be attributed to the fact that the velocity of the container żc = ±V c is
small but finite. Overall, the simulation is in very good agreement with the reference curve, and reproduces the details of
its meandering shape. This validates the various physical ingredients of the model, namely viscous bending and stretching,
gravity, inertia and contact with the floor.
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Fig. 7. Validation in a steady coiling geometry, with Π1 = 7000, Π2 = 7 and Π3 = 0 (no surface tension). (a) The coiling radius R = (x2 + y2)1/2 is recorded
continuously as the fall height H is varied, by slowly moving the container upwards (brown curve) and then downwards (blue curve). It is compared
against the reference solution of N. Ribe obtained by numerical continuation (black), after rescaling by the length scale L∗ . Note the abrupt changes in
the coiling radius at places where the reference solution folds back onto itself, as expected. Filled regions correspond to a rapidly varying radius, either
because the thread goes to a steady folding mode, as happens around H = 0.60, or because of a transient regime following a branch jump. (b) Two typical
configurations of the thread, for different fall heights. Note that the fundamental mode of a hanging viscous string is excited in ‘A’, while its first harmonic
is excited in ‘B’: the red curve has a node near z/L∗ = 0.05. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this article.)

Fig. 8. Convergence towards the reference solution in steady coiling geometry, showing the relative error on the coiling radius δR/R as a function of the
discretization parameters. Note that the mesh size �c is decreased along with the time step ε: we use �c = 1.25ε in all simulation runs. The same set of
physical parameters are used as in Fig. 7, except for the fall height H = 1.01 which is constant.

A detailed run such as the one shown in Fig. 7, corresponding to a total simulation time tf = 3030 and a total number
of time steps tf/ε ≈ 150 × 103, runs in about 30 min on a 2.6 GHz Intel Core i7 processor using 8 GB of memory. The
maximum number of vertices, when the fall height is maximum, is 460, corresponding to approximately 1800 degrees of
freedom.

5.2. Analysis of convergence

Convergence of the solution towards the reference solution of N. Ribe [9] is shown in Fig. 8 as a function of the dis-
cretization parameters. We use the same set of physical parameters as in Section 5.1, except for the fall height which is
fixed to H = 1.01 and remains constant in time, żc = 0.

Convergence is challenging in the presence of collisions on the floor, and we found it necessary to use the time roll-back
mode (c = rb) to obtain good convergence. Mesh subdivision is switched off, as in the previous section ( f is always set to
false). Each data point in the convergence plot in Fig. 8 was obtained by running a simulation using a specific pair of values
(ε, �c) of the time step and discretization length. Both were varied together, keeping their ratio constant: �c = 1.25ε . In
each simulation run, the coiling radius R is measured in our simulation after the initial transient period, and then averaged
over several periods. It is then compared to the reference value provided by N. Ribe.

The convergence of our numerical method is confirmed by the fact that the residual error goes to zero. The convergence
appears to be linear in the discretization parameters.
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Fig. 9. Validation of surface tension using steady coiling (Π1 = 7000, Π2 = 7, Π3 = 10.3 × 10−3). The same parameters are used as in Fig. 7, except for the
non-zero surface tension γ = 10−3. A good agreement is obtained with the reference curve that takes surface tension into account (solid black curve). The
reference solution with zero surface tension is shown for comparison (dotted line).

Fig. 10. Trace laid out by the thread in the simulation, in the transient regimes following the jumps labeled ‘C’ and ‘D’ in Fig. 7. In ‘C’, the fall height is
slowly increased and the thread jumps to a solution having a smaller radius; in ‘D’, the fall height is slowly decreased, and the thread jumps to a solution
having a larger radius. Same simulation parameters as in Fig. 7.

5.3. Validation of surface tension

With the aim to validate our discrete model for surface tension, we repeat the validation shown in Fig. 7 using the same
set of physical and numerical parameters, except for the surface tension coefficient, now set to γ = 10−3. The corresponding
dimensionless parameter is Π3 = 10.3 × 10−3. Surface tension has a marked effect on the coiling radius, as shown by
comparison of the solid and dashed black curves in Fig. 9. We obtain a good agreement between the simulation and the
new reference curve. This validates our discrete surface tension model.

6. Discussion

6.1. Transient regimes

Even though the steady coiling geometry provides a convenient set-up for validation and verification, our numerical
method can solve the non-steady dynamics of viscous threads. As an illustration, transient regimes following jumps from
one branch of steady coiling solutions to the next are shown in Fig. 10.
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Fig. 11. Simulation of the fluid-mechanical sewing machine. The thread is poured from a constant height onto a moving belt. As the velocity of the belt
is increased, the pattern laid out by the thread undergoes a series of bifurcations, similar to those that have been reported in the experiments: for this
particular value of the fall height, translated coiling, alternated loops and meanders are successively obtained. Arrows of different lengths indicate the
velocity of the belt as the pattern was formed: the belt moves to the right and more ancient patterns, corresponding to a slower belt, are located on the
right-hand side. Simulation parameters are the same as in Ref. [13] and are provided in the main text.

6.2. Application to the viscous sewing machine

The fluid-mechanical sewing machine is an extension of the steady coiling problem to the case of a moving substrate
[12,13]. To the best of our knowledge, our numerical method is the first one that can simulate this essentially non-steady
phenomenon.

Some of us have published in a separate article [42] a detailed analysis of the viscous sewing machine, considered
from a fluid-mechanical perspective. A typical simulation is presented in Fig. 11, when the velocity of the belt is steadily
increased. The patterns must be read from right to left: this corresponds to the order in which they were produced, and
so to an increasing belt velocities. On the right-hand side, for a low belt velocity, the translated coiling pattern is obtained.
Increasing the belt velocity, two successive transitions are observed, leading to the formation of alternated loops first, and
to meanders next. For even larger belt velocities, the oscillations disappear and the pattern becomes straight (not shown)
as the hanging part of the thread takes on a catenary-like shape. The same sequence of patterns has been observed in the
experiments, and is typical of small fall heights. A variety of patterns, some of which are quite complex, are obtained at
larger fall heights both in the experiments and in the simulations, see Ref. [42] for details.

The parameters used to produce the results of Fig. 11 are the same as in the experiments of Morris [13] but without
surface tension (γ = 0). We use a convenient set of units in which the fluid’s dynamical viscosity is μ = 1, its mass density
is ρ = 1, and the acceleration of gravity is g = 1. With this natural set of units, the quantities L∗ and T ∗ defined earlier
read L∗ = 1 and T ∗ = 1. The fall height is fixed to H = 0.865; this corresponds to a physical fall height of 3.7 cm in the
experiments [13]. The area of the circular outlet at the bottom of the container is set to Ac = 0.0275, and the imposed
volume flow rate is Q c = 2.29 × 10−5. The corresponding values of the dimensionless groups read Π1 = 608.5, Π2 = 0.369,
Π3 = 0. The belt is held still until time t1 = 919 for the initial transient relax. From this time on, the belt velocity is steadily
accelerated until the end of the simulation, occurring at time tf = 1650, its final velocity being 0.02.

The spatial discretization parameter is set to �c = 0.005, and the time step to ε = 0.05. We handle collisions using the
time roll-back method, c = rb. The stretching effect of gravity is severe, and the mesh is refined adaptively to maintain a
good resolution near the bottom of the thread, as explained in Section 4.5. The subdivision criterion was set up by trial and
errors, using the reference steady coiling solution:

f (�, �0, z) = (
� > min

(
1.96�0,0.0062max(0, z−0.1

0.02 )
))

. (77)

It forces subdivision whenever the segments get stretched by a factor close to 2, and whenever they approach the coil region
near the floor z = 0, where a good resolution is needed. Segments are refined up to the sixth generation in the simulation.

6.3. Limitations and perspectives

The present paper presents a time scheme based on a semi-implicit discretization of the viscous force: this force is
treated implicitly with respect to the velocity but explicitly with respect to positions, see Eq. (72). Compared to a fully
explicit scheme, this method is more difficult to implement but vastly superior in terms of robustness. In a previous paper,
we have explored a fully implicit scheme [41], by retaining the non-linear dependence of the viscous forces on positions:
in that case, each time step requires a non-linear root-finding. The benefit of the non-linear implicit approach is that
it preserves conservation laws associated with the symmetries of the problem, such as the conservation of the angular
momentum, when it applies. By contrast the method presented here displays the usual dissipation of angular momentum.
This is a minor drawback as viscous thread are never encountered as free-standing bodies. In all the demonstration examples
shown earlier, neither the linear nor the angular momentum of the thread are actually conserved, because of the exchange
of momentum with the floor and nozzle during collisions.

In future work, it would be interesting to extend the present numerical model to thin threads governed by more general
constitutive laws, such as visco-elastic filaments [48,72] which can exhibit a complex and poorly understood behavior [73].
To this end, the discrete geometrical model exposed in the present paper can be reused and combined with different
constitutive laws. It would also be interesting to couple our thin thread model with existing simulation methods for 3d
flows with free boundaries [74,75,20,67], in order to capture the interaction of the thread with the slowly collapsing pile
that forms where it merges with the bath.
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6.4. Conclusion

We have presented a numerical method for simulating the dynamics of thin viscous threads. In contrast with existing
numerical methods, it captures the combined effects of stretching, bending and twisting forces, inertia and large rotations. It
is not restricted to steady flows. The method has been derived by writing the smooth equations of motion for thin threads
into a Lagrangian form, and using a careful spatial discretization. In particular, a discrete notion of twist has been used,
which is based on the geometry of parallel transport. The internal stress representing the internal viscous stress has been
derived from variational principles, using a Rayleigh potential. All the relevant physical quantities, such as strain rates and
internal stress, have been identified in the discrete setting. Our discrete equations are equivalent with the classical smooth
equations in the limit of a zero mesh size, as shown in Appendix B. The method has been validated against reference
solutions available for steady coiling. Demonstration examples in the non-steady case have been shown.

We would like to thank Neil Ribe for getting us interested into the fascinating dynamics of thin threads, and for sharing
his continuation data which enabled us to validate our code.
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Appendix A. Interpretation of the strain rates

We show that the rates of strain defined in the main text are the convected derivatives of the elastic strain. This is
consistent with the Rayleigh–Taylor analogy, which states that the viscous constitutive laws are identical to the elastic ones
when the strain is replaced with the time derivative of strain.

A.1. Interpretation of the axial stretch rate

The Lagrangian axial strain rate d has been defined in Eq. (10) by d(S, t) = t(S, t) · u′(S, t). This quantity is equal to the
convected derivative of the stretch �(S, t) defined in Eq. (7):

d(S, t) = t(S, t) · ∂u(S, t)

∂ S
= 1

�
T · ∂T

∂t
= 1

2�

∂(T 2)

∂t
= 1

2�

∂(�2)

∂t
= ∂�

∂t
. (A.1)

Here we have used the identity Ṫ = u′ , that follows from the definitions T = x′ and u = ẋ. The right-hand side conforms
with our intuition of the strain rate d(S, t) as measuring the rate of stretching of material segments parallel to the centerline.

A.2. Interpretation of the rate of change of twist and curvature

The rotation velocity ω and the twist-curvature vector π characterize infinitesimal changes of the material frame di(S, t)
corresponding to increments of time t and of arc length S , respectively. A compatibility condition relating the space deriva-
tive of ω′ and the time derivative of π̇ can be derived as follows. We start from the identity of the cross-derivatives of
the material frame vectors, ∂d′

i/∂t = ∂ḋi/∂ S . Inserting the definitions of the angular velocity, ḋi = ω × di and of the twist-
curvature vector, d′

i = π × di , and eliminating di we find, after some algebra:

∂ω

∂ S
= ∂π

∂t
− ω × π,

which is also known as the Maurer–Cartan identity.
The right-hand side is the covariant derivative of π , and enjoys the property that it commutes with the longitudinal and

perpendicular projections:

∂ω

∂ S
· t = ∂(π · t)

∂t
(A.2a)

P⊥
(

t,
∂ω

∂ S

)
= ∂ P⊥(t,π)

∂t
− ω × P⊥(t,π). (A.2b)

In the left-hand sides, one can identify the rate of strain e = ω′ introduced in Eq. (18), whose tangent projection et is
relevant to the twisting mode, and whose perpendicular projection eb is relevant to the bending mode, by Eqs. (19). The
tangent and perpendicular projections of π are the kinematic twist τ and the binormal curvature K by Eq. (17b). Therefore,
we can rewrite the above set of equations as
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et(S, t) = ∂τ (S, t)

∂t
(A.3a)

eb(S, t) = ∂ K (S, t)

∂t
− ω × K (S, t). (A.3b)

The strain rates are therefore equal to the convected derivative of the kinematic strain τ (twisting mode) and to the con-
vected derivative of the binormal curvature measured in the rotating material frame (bending mode).

Appendix B. Equivalence with Kirchhoff equations

This section establishes the equivalence of the Lagrangian description of threads based on the centerline/spin representa-
tion (x, v) used in our implementation, and the Kirchhoff equations for thin viscous threads widely used in fluid mechanics.
In doing so, we shall identify important quantities, such as the viscous stress. This appendix is not required for the imple-
mentation.

B.1. Constitutive laws underlying the Rayleigh potential

To cast our equations into the formalism of Kirchhoff, we shall start by calculating the force P v and twisting moment Q v
arising from viscous stress. By Eq. (30), this requires working out the first variation of the Rayleigh potential with respect to
the velocities û and v̂ , near the real motion û = u = ẋ and v̂ = v . By Eqs. (27) and (29), we can write this first variation as

−dD(x; u, v; δu, δv) = −
S+∫

S−

(
ns dLs(δu) + m · dM(δu, δv)

)
dS, (B.1)

where

dM(x; δu, δv; S) = t(S)dLt(x; δu, δv; S) + dLb(x; δu, δv; S). (B.2)

The coefficients appearing in this variation have been denoted by ns and m:

ns(S, t) = ∂Ds

∂Ls(S)

∣∣∣∣
rm

= D
Ls|rm

�
= D

d

�
(B.3a)

m(S, t) = ∂Dt

∂Lt(S)

∣∣∣∣
rm

t + ∂Db

∂Lb(S)

∣∣∣∣
rm

= C
et

�
t + B

eb

�
. (B.3b)

They depend only on the real motion, as denoted by the subscript ‘rm’. In this expressions we have omitted some of the
arguments such as x, u, v and S for better legibility.

Eqs. (B.3) are the constitutive laws for a viscous thread: B , C and D are the viscous moduli introduced in Eqs. (28), m
the internal moment arising from twisting and bending, and ns is the scalar tension resisting stretching. The latter gives rise
to an internal tension force measured by the vector

ns(S, t) = ns(S, t)t(S, t). (B.4)

When rewritten in terms of the Eulerian rates of strain defined by

dE = d

�
, eE = et t + eb

�
= e

�
= 1

�

∂ω

∂ S
= ∂ω

∂s
, (B.5)

Eq. (B.3) yields the classical form of the constitutive laws for a viscous thread: the Trouton law for stretching is ns = DdE

and the internal moment associated with twist and bending reads m = [C(t ⊗ t) + B(1 − t ⊗ t)] · eE. Here, the expression in
square brackets is known as the tensors of viscous moduli, and the terms in parenthesis are the tangent and perpendicular
projections. In Appendix D, we show equivalence with the constitutive laws derived by Ribe [9] from the Stokes equations
in 3d.

B.2. Identification of the net viscous force and twisting moment

In Eqs. (19), the rates of strain associated with twist and bending were defined as the longitudinal and perpendicular
components of the strain rate vector ω′ = e. In terms of the calligraphic reconstruction operators, this can be written as

dW(x; û, v̂; S)

dS
= t(S)Lt(x; û, v̂; S) +Lb(x; û, v̂; S). (B.6)
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The right-hand side is linear with respect to the virtual velocities, and as result its first variation with respect to the virtual
velocities coincides with the right-hand side of Eq. (B.2). This shows that dM is equal to the first variation of W ′(S).
Together with the identity ns dLs = ns(t · δu′(S)) = ns · δu′(S), this allows us to rewrite Eq. (B.1) in compact form:

−dD(δu, δv) = −
S+∫

S−

(
ns(S) · d[δu]

dS
+ m(S) · d[dW(δu, δv)]

dS

)
dS. (B.7)

Note that for any real motion, the quantity W evaluates to the angular velocity ω by Eq. (22). In the language of the
principle of virtual work, the above expression is known as the internal virtual work of thin rods.

We can compute the first variation of W , which has been defined earlier in terms of the centerline/spin variables in

Eq. (22), as dW(δu, δv) = t δv + t×δu′(S)

�
. Inserting this into Eq. (B.7), integrating by parts, and identifying the coefficient of

δv with Q v and the coefficient of δu with P v according to Eq. (30), we find

Q v(S, t) = ∂m(S, t)

∂ S
· t(S, t) (B.8a)

P v(S, t) = ∂n(S, t)

∂ S
, (B.8b)

where we have defined an auxiliary quantity n(S, t), to be interpreted later as the total internal stress resultant:

n(S, t) = ns(S, t) + t(S, t) ×
(

1

�(S, t)

∂m(S, t)

∂ S

)
. (B.8c)

In addition to these interior contributions P v and Q v, the first variation of the Rayleigh potential includes boundary terms
that enter into the expression of the viscous forces on the endpoints S±: these boundary terms will be considered in the
discrete case, as required. These boundary terms yield the same boundary conditions as in the classical Kirchhoff theory,
a verification that is left to the interested reader.

B.3. Equivalence with Kirchhoff equations

Dividing the Lagrangian equation of motion (31a) by � and combining with the definition of n in Eq. (B.8c), we have

1

�

∂n(S, t)

∂ S
+ P

�
= ρ

A0

�
ẍ. (B.9)

We recover the first Kirchhoff equation for the balance of linear momentum, usually written ∂n/∂s + P E = ρ A ẍ, after
identification of the arclength in actual configuration ds = �dS , of the Eulerian density of external load P E = P/� and of the
cross-section area A in actual configuration by Eq. (13).

To establish the second Kirchhoff equation, we note that the transverse and tangent projections of ∂m
∂s = 1

�

∂m
∂ S enter in

the definition of n in Eq. (B.8c), and in the expression (B.8a) of the net twisting moment Q v, respectively. Combining with
the second equation of motion (31b), this yields

∂m

∂s
= −t × n + J v̇t − Q

�
t. (B.10)

We recover the second Kirchhoff equation for the balance of angular momentum, usually written ∂m/∂s + t × n + Q E t =
J v̇t , where Q E = Q /� is the Eulerian density of twisting moment applied on the rod. We have therefore established the
equivalence of our formalism with the classical, Eulerian equations for thin viscous threads.

Appendix C. Parallel transport, discrete twist

The main difficulty in setting up a discrete model for thin viscous thread resides in the definition of twist. In the smooth
case, twist is defined by projecting the infinitesimal rotation vector π along the tangent. This operation is no longer possible
in the discrete case, as rotations are finite and are represented by a matrix. To remedy this difficulty, we define twist by
difference with the geometrical notion of parallel transport, which can be extended naturally to the discrete case.

C.1. A geometrical view of twist-less configurations: parallel transport

Consider the unit tangents ti−1 and ti of the segments adjacent to a vertex xi . We shall assume that these tangents are
not opposite to each other,

ti−1 �= −ti . (C.1)



Author's personal copy

44 B. Audoly et al. / Journal of Computational Physics 253 (2013) 18–49

This assumption is satisfied, except for a subset of configurations whose measure is zero, which we ignore. A rotation matrix
Q is said to be compatible at vertex xi if it maps ti−1 to ti :

Q · ti−1 = ti . (C.2)

Given two unit tangents ti−1 and ti subjected to the condition (C.1), we define parallel transport across vertex xi as the
minimal rotation that is compatible, in the sense of Eq. (C.2). Here, ‘minimal’ refers to the rotation having the smallest possible
angle of rotation about its own axis.1 This defines a unique rotation under the assumption of Eq. (C.1), as we show below.
In the smooth case, parallel transport is related to Bishop’s notion of natural frame on a curve [76,57].

Equivalently, parallel transport can be defined as the rotation T i whose axis is along the binormal K i and whose angle
is the turning angle ϕi across vertex xi . The turning angle is defined by

ϕi = cos−1(ti−1 · ti) with 0 � ϕi < π. (C.3)

Note that ϕi �= π by Eq. (C.1). The rotation T i just defined satisfies

T T
i · T i = 1 (C.4a)

T i · K i = K i (C.4b)

T i · ti−1 = ti . (C.4c)

Indeed, T i is a rotation, its axis is aligned with the binormal curvature K i , and its rotation angle ϕi is such that it is

compatible. In the particular case where the adjacent segments are aligned, ti−1 = ti , we have ϕi = 0 and parallel transport
is the identity matrix:

T i = 1 if ϕi = 0. (C.4d)

Any compatible rotation maps ti−1 to ti , and as a consequence its angle of rotation has to be greater or equal to the angle
ϕi between them. The angle of rotation of the matrix T i that we have just defined is precisely ϕi . This almost establishes
the equivalence of the geometrical and practical definitions of parallel transport; to complete the proof, we have to show
that the there is a unique compatible rotation whose rotation angle is equal to ϕi . This is what we do now.

First note that any compatible rotation Q can be decomposed as

Q = T i · R
(
ti−1, τ (Q )

)
(C.5)

for some angle τ (Q ). Here R(ti−1, τ ) denotes the rotation about ti−1 with angle τ . This decomposition follows from the

remark that T −1
i · Q is a rotation leaving ti−1 invariant. Denoting qσ the unit vector obtained by rotating ti−1 about the

binormal by an angle σ , one can compute the scalar product of qσ with its image q′
σ = Q · qσ as

qσ · q′
σ = cosϕi + [

sin(ϕi − σ) sin(σ )
](

1 − cosτ (Q )
)
. (C.6)

This equality can be established in the direct orthonormal basis whose first and last vectors are ti−1 and K i/|K i |, respec-
tively; in this frame, qσ = {cosσ , sinσ ,0} and ti = {cosϕi, sinϕi,0}. Details of the calculation are left to the reader.

Being obtained one from each other by a rotation with angle ϕi , the unit vectors qσ and q′
σ make an angle smaller than

ϕi , and so, qσ · q′
σ � cosϕi for any σ . By the equation above, [sin(ϕi −σ) sin(σ )](1 − cosτ (Q )) � 0. Assuming ϕ0 �= 0, there

exists at least a value of σ that makes the square bracket of Eq. (C.6) negative and non-zero; this shows that τ (Q ) = 0 in

Eq. (C.5) and so Q = T i , as announced. The case ϕ0 = 0 is trivial, as the identity mapping is obviously the minimal rotation

(its angle is zero) leaving ti−1 = ti invariant. We have just shown that there is a unique compatible rotation whose angle is
minimal, and this defines the parallel transport T i .

Parallel transport establishes a natural mapping between cross-sections belonging to neighboring segments, and is similar
to the notion of a Levi-Civita connection in the smooth case [77]. It is used to define the discrete twist by difference:
twist-less configurations of the rod to be those obtained by parallel-transporting the material frames from one segment to
the next.

In the smooth case, the identification of parallel transport with twist-less configurations of the rod can be justified as
follows. Infinitesimal compatible rotations of a frame compatible with a prescribed curve are associated with a Darboux
vector π = K + τ t by Eq. (17b). The binormal curvature K is a function of the curve. Minimizing the rate of rotation |π |
while holding the curve fixed leads to τ (S, t) = 0, which indeed characterizes twist-less configurations.

1 In geometrical terms, this minimal rotation minimizes the distance to the identity over the Lie group of direct rotations in Euclidean 3d space.
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Fig. 12. Notations used for computing the rate of change of the discrete twist, and illustration of Eq. (C.10). The rotation mapping one material frame to the
next is decomposed using parallel transport and the polar angles τ−

i and τ+
i .

C.2. Discrete twist of a framed curve

Recall that material frames are orthonormal. Let then Q i be the unique rotation mapping one material frame to the
next:

di
j = Q i · di−1

j for j = 1,2,3. (C.7)

This rotation is compatible, as j = 3 yields Eq. (C.2) again after using the adaptation condition (48). Using a similar decom-
position as earlier in Eq. (C.5), there exists an angle τi = τ (Q i) such that

Q i = T i · R
(
ti−1, τi

) = R
(
ti, τi

) · T i . (C.8)

The second equality follows from the fact that the rotation [T i · R(ti−1, τi) · T T
i ] is conjugate to R(ti−1, τi), and so has the

angle of rotation τi , and leaves ti invariant; it is therefore the rotation about ti with angle τi , which is noted R(ti, τi). Note
that the angle τi is uniquely defined modulo 2π .

The angle τi defines the axial rotation required to make neighboring material frames coincide, in complement with
parallel transport T i . It is called the discrete angle of twist across the vertex xi . Note that the rotations Q i , T i and R(ti, τi)

converge in the smooth limit towards infinitesimal rotations represented by Darboux vectors π , K and τi t respectively; in
this limit, Eq. (C.8) becomes π = K + τi t , and we recover Eq. (17b). This confirms that our definition of the discrete twist is
consistent in the smooth limit.

C.3. Rate of change of twist

In Section 3.4, the rate of twisting strain is defined as the time derivative τ̇i of the twist angle. Here, we work out its
expression in terms of the centerline/spin variables. Let us tart by introducing the polar angles τ−

i and τ+
i of the binormal

K i in the frames (di−1
1 ,di−1

2 ) and (di
1,di

2), respectively, as shown in Fig. 12. They can be computed by taking the arctangent
of the coordinates of the vector ti−1 × ti , which is aligned with K i by definition of the latter. These coordinates are denoted
by (τ−

i1 , τ−
i2 ) in the first frame and (τ+

i1 , τ+
i2 ) in the second frame:

τ±
i = tan−1

(
τ±

i2

τ±
i1

)
, (C.9a)

where

τ±
i j = (

ti−1 × ti) · di+(±1−1)/2
j . (C.9b)

In the second equation, j takes on the values 1 or 2, and the superscript in the last factor evaluates to the index (i − 1) of
the segment in the left-hand side when ± = −, and to the index (i) of the segment in the right-hand side when ± = +.

As shown graphically in Fig. 12, the rotation Q i can be decomposed into a rotation about ti−1 with angle τ−
i that

brings di−1
1 onto the binormal K i , composed by the parallel transport that maps ti−1 to ti without affecting the binormal,



Author's personal copy

46 B. Audoly et al. / Journal of Computational Physics 253 (2013) 18–49

and composed by another rotation about ti with angle (−τ+
i ) that brings back the binormal to di

1 without affecting the
tangent:

Q i = R
(
ti,−τ+

i

) · T i · R
(
ti−1, τ−

i

)
. (C.10)

As earlier in Eq. (C.8), we can use conjugation to group the axial rotations in equation above. Identifying the result with the
definition of τi in Eq. (C.8), we have τi = τ−

i − τ+
i . Our aim is to compute is the quantity

τ̇i = τ̇−
i − τ̇+

i . (C.11)

To derive an expression for τ̇±
i , we first compute τ̇−

i j in the frame moving with the first material frame (di−1
j )1� j�3.

In this frame, all vectors in the right-hand side of Eq. (C.9b) are still, except ti which has angular velocity ωi − ωi−1. This
yields, for j = 1,2,

τ̇−
i j = (

ti−1 × [(
ωi − ωi−1) × ti]) · di−1

j = −(
ti−1 × di−1

j

) · [(ωi − ωi−1) × ti],
after permutation of the mixed product. Inserting this expression into the derivative of the arctangent in Eq. (C.9a), we
find

τ̇−
i = τ−

i1 τ̇−
i2 − τ−

i2 τ̇−
i1

(τ−
i1 )2 + (τ−

i2 )2
= (ti−1 × ti) · [(ωi − ωi−1) × ti]

|ti−1 × ti |2 . (C.12a)

The time derivative of the second angle τ+
i is given by the same formula, with the indices i and i − 1 swapped:

τ̇+
i = (ti−1 × ti) · [(ωi − ωi−1) × ti−1]

|ti−1 × ti|2 . (C.12b)

Inserting this expression into Eq. (C.11) and permuting the mixed product, we have

τ̇i = (
ωi − ωi−1) · (ti − ti−1) × (ti−1 × ti)

|ti−1 × ti |2 . (C.13)

In the right-hand side, the second factor can be simplified using the fact that both ti−1 and ti are unit vectors. This yields

τ̇i = (
ωi − ωi−1) · ti−1 + ti

1 + ti−1 · ti
,

in close analogy with the smooth equation (19a). Inserting now the decomposition (49) of the material velocity ω j and
simplifying, we have

τ̇i = vi − vi−1 + K i · ṫ i−1 + ṫ i

2
, (C.14)

after using the definition (45) of the discrete binormal curvature K i .
Eq. (C.14) is used in the code to compute the rate of twisting strain. Like its smooth counterpart, see Eq. (24), it captures

the geometrical coupling between the mode of rotation and the centerline motion. The geometrical origin of this coupling
has been recognized earlier but has not been used as a starting point for dynamical simulations of threads, to the best of our
knowledge. The role of the binormal curvature K has been noted in the related context of Füller’s theorem [55] that yields
the increment of writhe of a space curve. Expressions similar to those in Eqs. (C.12) have been derived for the increment of
discrete writhe, and have been used for the simulation of the Brownian dynamics of DNA modeled as an elastic rod [78].

Appendix D. Equivalence with the constitutive equations of Ribe

In a classical paper, Ribe analyzed the helical coiling of viscous jets falling on a plane [9]. In the frame rotating with
the jet, the shape of the centerline is stationary. The equations for the shape of the jet are expressed as a set of non-linear
ordinary differential equations with boundary conditions at both ends. This non-linear boundary-value problem was solved
by numerical continuation techniques, using the AUTO [70] software. These solutions, which corresponds to steady configu-
rations, have been used to validate our dynamical code. We show below that our constitutive laws are equivalent to those
derived by Ribe from the Stokes equations in 3d.

Ribe introduces an Eulerian twist-curvature vector πE which satisfies an equation similar to our Eq. (14b), but with a
derivative with respect to arc length s in actual configuration:

∂di

∂s
= πE × di . (D.1)
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The components of πE are denoted by

πE =
⎡
⎣ κ1

κ2
κ3

⎤
⎦ , (D.2)

where the square brackets indicate a decomposition in the material frame (d1,d2,d3), which is a ‘moving’ frame, i.e. this
frame varies with the arc length parameter.

As in Eq. (17b), the Eulerian kinematic twist τ E and binormal curvature vector K E are obtained by a decomposition of
the twist-curvature vector πE into transverse and tangential components,

τ E = κ3, K E =
⎡
⎣ κ1

κ2
0

⎤
⎦ . (D.3)

In the frame rotating with the coils, the material rotation ωR is written in a way that is similar to Eq. (17a), ωR = t × ṫR +
ω3d3, where ṫR is the time derivative evaluated in the rotating frame. Since the shape of the thread is steady in this frame,
we have ṫR = U ∂ωR

∂s = UπE × t , where U = uR · t is the axial velocity of the fluid in the rotating frame. The expression for
the material angular velocity can be obtained by combining the above equations,

ωR =
⎡
⎣ Uκ1

Uκ2
ω3

⎤
⎦ . (D.4)

The material angular velocity in the laboratory frame follows from the composition of velocities, that is ω = ωR + Ωez

where Ω is the frequency of coiling, which coincides with the relative angular velocity of the rotating frame with respect
to the laboratory, and ez is the axis of rotation of the coils.

As a result, the Eulerian gradient of rotation reads

∂ω

∂s
= ∂

∂s

⎡
⎣ U κ1

Uκ2
ω3

⎤
⎦ =

⎡
⎣ (Uκ1)

′
(Uκ2)

′
ω′

3

⎤
⎦ + πE ×

⎡
⎣ Uκ1

Uκ2
ω3

⎤
⎦ =

⎡
⎣ (Uκ1)

′ + κ2(ω3 − Uκ3)

(U κ2)
′ − κ3(ω3 − Uκ3)

ω′
3

⎤
⎦ .

Here, the term proportional to πE comes from the fact that the material frame associated with the square brackets is a
moving frame by Eq. (D.1).

These expressions coincide with the rates of strain used by Ribe in his constitutive laws for twisting and bending. This
is consistent with our Appendix B.1, and with Eq. (B.5) in particular.
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