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Abstract. We propose a method to identify planar regions in volume
data using a specialized version of the discrete Radon transform operat-
ing on a structured or unstructured grid. The algorithm uses an efficient
discretization scheme for the parameter space to obtain a running time
of O(N(T log T )), where T is the number of cells and N is the number
of plane normals in the discretized parameter space.

We apply our algorithm in an industrial setting and perform exper-
iments with real-world data generated by topology optimization algo-
rithms, where the planar regions represent portions of a mechanical part
that can be built using steel plate.

Keywords: Discrete Radon transform, Hough transform, Plane detec-
tion, Topology optimization.

1 Introduction

The field of topology optimization studies the automatic generation of mechanical
parts with an a priori unknown topological shape [1]. Prominent techniques
include continuous methods [1,2,3], which optimize a 3D density function in
the given work space, or truss methods [4,5], which optimize and rearrange a
construction of stiff linear elements connected at junctions points. In the present
paper we analyze data arising from continuous methods. Since these methods
often produce output defined on unstructured grids such as tetrahedral meshes,
our method is designed to work on this kind of data.

The density function obtained from continuous methods is a coarse model of
the optimal structural design. Typically, post processing of the density function
is needed in order to obtain a constructible shape. For example, planar metal
plates are a simple and cheap building block to physically realize a mechanical
part. We present an algorithm which automatically computes a set of planar
regions which best approximates a given density function arising from topology
optimization.

By a planar region, we denote a connected component of the intersection of
some plane with the support of the given density function Ω ⊂ R

3, i.e. the do-
main on which the density function is defined. Our algorithm solves the problem

F. Chen and B. Jüttler (Eds.): GMP 2008, LNCS 4975, pp. 119–126, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://geom.mi.fu-berlin.de/


120 U. Bauer and K. Polthier

Fig. 1. A volume rendered density function and two planar regions, visualized by their
corresponding planes. Volume data colored according to the closest planar region.

to find the planar region that covers most density. The process can be repeatedly
applied after purging the density around the optimal planar region.

Our algorithm uses a discrete Radon transformation [6] and computes the in-
tegrated density of planar regions through the work space. Regions with highest
integral density become candidates for the final construction (cf. Fig. 1). A sim-
ilar technique for 2D images is known as Hough Transform [7,8]. The space of
planes in R

3 is discretized using a triangulation of the unit sphere together with
an optimized traversal algorithm to reduce the number of sorting procedures.

The algorithmgrewout of an industry collaborationwithThyssenKruppTallent
Ltd., andhasbeen testedonvariousdatasets fromautomotive industry.Weprovide
experimental evidence of the reliability and efficiency of our implementation.

1.1 Related Work

The proposed technique can be considered as a discretization of a variant of the
Radon transform in R

3 on piecewise constant functions defined on structured or
unstructured grids. The most well-known discretization of a Radon transform is
the Hough Transform [7,8], which is defined on a 2-dimensional grid representing
a pixel image.

Other discretizations of the Radon transform have been proposed in [9] for
3-dimensional regular grids, and in [10,11] for unstructured point clouds in R

3.
A common problem in these schemes is that the configuration space, in partic-
ular the space of undirected plane normals, namely the projective plane RP

2, is
represented by a single-chart parametrization over a subset of R

2, and contains
singularities where a piece of the boundary of the parameter domain is mapped
onto a single point. In the vicinity of these singularities, unbounded metric dis-
tortion is unavoidable. Uniform sampling in the parameter domain therefore
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leads to drastic oversampling near the singularities. We propose a discretization
that aims at equal distribution of sampling points on RP

2. Note that this is
not an issue for the usual Hough transform in R

2, since the space of unoriented
normals RP

1 can be parametrized without metric distortion.
A different scheme using clustering of local estimates for plane detection in

point clouds has been proposed in [12]. This approach, however, has disadvan-
tages: first, the local estimation of best-fitting planes is susceptible to noise and
requires an additional parameter determining the estimation range. Moreover,
finding clusters is a complex problem. In comparison, discrete variants of the
Hough transform require no local estimates and no initial values, are very ro-
bust to noise, and deterministically find the optimum in the discrete parameter
space by exhaustive search.

Other examples (with a different scope) of post-processing methods with the
goal to extract production-relevant data from data generated by structural op-
timization tools can be found in [13,14].

1.2 Overview

In Section 2, we review the problem in the smooth setting. Section 3 describes
the proposed discretization of the problem. In Section 4, we provide a complexity
analysis of the algorithm, and Section 5 contains results of our algorithm on test
data.

2 The Radon Transform and Generalizations

Consider a density function ρ : Ω ⊂ R
3 → R with support on a compact domain

Ω ⊂ R
3. The (generalized) Radon transform of ρ is defined as the integral of ρ

over a hyperplane H ∈ H [6]:

R[ρ](H) =
∫

H

ρ(x)dx

In his original work, Radon’s main interest was on the inverse Radon transform,
which allows to reconstruct the function ρ from the integrals over hyperplanes; this
transform found a particularly important application in the evaluation of com-
puter tomography data. But also the Radon transform gained interest in a partic-
ular discretization for 2D images, called the Hough Transform [7,8], which is an
important tool for line detection. One notable property of the Hough transform
(and the Radon transform in general) is its high robustness to noise, because only
quantities integrated over large domains are considered.

Maxima of this function over the set of hyperplanes H correspond to planar
features. To incorporate geometric locality into the search for planar regions, we
can restrict the integration to connected components of the intersection of H
with the domain Ω and obtain the following optimization problem:

max
D⊂Ω∩(H∈H)
D connected

∫
D

ρ(x)dx
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To smooth the density function and to allow a certain tolerance for off-plane
deviation, we can enlarge the integration domain to include all points having
distance at most w from the hyperplane

Hw = {x : d(H, x) ≤ w} ,

i.e. the intersection of two halfspaces, called fattened plane of width w, and
consider the optimization problem

max
D⊂Ω∩Hw

D connected

∫
D

ρ(x)dx

This smoothing is of special interest in our application, since the density
function computed by topology optimization algorithms is often concentrated in
bone-like structures (cf. Figs. 1 and 3). To recognize planar regions formed by
these “bones”, one would like to set the width w to approximately match the
width of such a bone. This is especially important when the optimization process
is applied iteratively, because the density covered by the fattened plane has to
be purged after each iteration. If the width w is chosen too small, some density
in the vicinity of the optimal planar region is left and will be considered in the
next iteration. As a consequence, several similar planar regions can be found,
corresponding to the same feature in the input data. To avoid this problem, the
parameter w must be chosen large enough that the planar features are completely
covered by the fattened planes.

3 Detection of Planar Regions in Discrete Data

Assume that we are given a structured or unstructured grid with a piecewise
constant nonnegative scalar density function assigned to each cell. We are now
searching for the fattened plane that covers most density. To simplify compu-
tation, we are using a lumped mass model, i.e. we assume that the whole mass
inside a cell is concentrated at its barycenter. The mass of a cell is computed
as the density multiplied by the volume of the cell. If the width w of the fat-
tened plane is considerably larger than the typical diameter of the cells, this
simplification introduce only negligible artifacts.

3.1 Discretization of the Parameter Space

The described problem is a global nonlinear optimization problem, but it only
has a 3-dimensional parameter space, which makes it feasible for exhaustive
search in an appropriate discretization of the parameter space. We choose the
following parametrization for the parameter space, which is the space of unori-
ented planes. We describe each plane by a normal vector n with ‖n‖ = 1 and a
distance to the origin d. Since we are only considering unoriented planes, we also
assume 〈n, (1, 0, 0)〉 ≥ 0. This means that the space of normals considered can
be parametrized over a unit hemisphere. To obtain a discrete search space for the
normals, we therefore are looking for an even distribution of points on the unit
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Fig. 2. A triangulated hemisphere, obtained by successive subdivision of the icosahe-
dron, with a Hamiltonian path over the edge graph

(hemi-)sphere. This is achieved by repeated 1–4 subdivision of an icosahedron,
each time followed by a projection of the new vertices onto the unit sphere (see
Fig. 2). For a more in-depth discussion about the problem of distributing points
evenly on the sphere, see [15].

To obtain a discretization for the range of distances d, we first move the origin
to the centroid of the volume mesh. Now, for every direction n, we compute the
smallest range of distances d containing all planes with normal n going through
the data points, by sorting the data points with respect to their scalar product
with the normal dP = 〈P, n〉. This range is then equidistantly discretized.

3.2 Sweeping the Parameter Space

With the data points sorted in direction of the normal n, we can now easily
slide a window [d−w, d+w] over the range of distances. We use an accumulator
variable to count the mass of all points in the range [d − w, d + w] w.r.t. the
normal n. Each time we proceed to the next discrete value of d, we add to the
accumulator the mass of all newly covered points, and subtract the mass of all
points no longer covered by the window. Since the points are sorted, this can be
done in constant time for each point.

If we are only searching for the mass in connected components inside the
window (where connectivity is induced by the grid), we also remember the first
and the last index of the (sorted) points covered by the current window. We
then do a traversal of the connectivity graph by breadth first search to find all
connected components and to compute their respective masses.

When we iterate through the discrete set of normals, we make sure that subse-
quent normals are joined by an edge of the subdivided icosahedron, and therefore
do not vary much. This is ensured by ordering the vertices of the triangulated
hemisphere by a Hamiltonian path over the edge graph. Such a Hamiltonian
path can easily be found by “spiraling” from the north pole to the equator (see
Fig. 2). The benefit of using this ordering of the normals is that complexity of
two subsequent sorting operations is low when the two normals are very similar,
because the two resulting sorting sequences are also similar.
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Algorithm 1. PlaneFinder
Input: A grid G with a piecewise constant density function ρ

A width w of the fattened planes
Output: A planar connected component covering most mass

discretize the unit hemisphere by iterated subdivision of the icosahedron
order the vertices by a spiraling Hamiltonian path
for each vertex n (i.e. normal) do

sort the grid cells in direction n
discretize the range in direction n equidistantly
for each plane (n, d) do

collect the cells closer than w to the plane
compute the connected component having most mass

end for
end for
return the connected component having most mass (and the corresponding plane)

3.3 Purging Dominant Planar Features

After a complete sweep through the discretized parameter space, we have found
an optimal plane with a corresponding set of grid cells. We now purge the density
values on this set of cells. This allows to find further planar regions, avoiding
the possibility that another optimum covers essentially the same data.

4 Complexity Analysis

Let T denote the number of cells, N be the number of discrete normal directions
for the planes (the number of vertices of the triangulated hemisphere), and D
be the maximal number of planes checked in any direction. Assuming D ∈ o(T )
and w ∈ O( 1

D ), the total running time of the algorithm is O(N(T log T )).
For each normal, the set of lumped mass points is sorted, which is done in

time O(T log T )). Then the set of points covered by the current plane is col-
lected, taking time O(T ) in total. For each of these sets, a breadth-first search is
performed to compute the connected components of the induced subgraph of the
cell connectivity graph. Each vertex is covered by a constant number of fattened
planes, since w ∈ O( 1

D ). Moreover, since each vertex of this graph has degree at
most 4, traversal of each of these graphs also takes O(T ) in total.

5 Results

We tested our algorithm on real-world instances with between 150 000 and
300000 tetrahedra. On a typical instance with 163 799 tetrahedra, 43 042 of
which carried non-zero density, computation of the optimal plane took about 25
seconds on a standard laptop (2.16 GHz, 2GB RAM). The dimensions of the
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(a) (b)

(c) (e)

(d)

Fig. 3. Identifying planes on a typical density distribution generated with a topology
optimization software. (a) The input domain. (b) A volume rendering of the density
function. (c) An isosurface of the density function, shown transparent. (d) The 6 most
dominant planar regions found using our algorithm. (e) A closeup of (d).
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bounding box of the tetrahedral mesh are approximately 80 × 90 × 20 cm; the
parameter w was set to 2 cm. The results computed using 6 iterations of the
algorithm are visualized in Figure 3.
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