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Triggered by the development of new hardware, such as laser range scanners for high resolu-
tion acquisition of complex geometric objects, new graphics processors for realtime rendering
and animation of extremely detailed geometric structures, and novel rapid prototyping equip-
ment, such as 3D printers, the processing of highly resolved complex geometries has estab-
lished itself as an important area of both fundamental research and impressive applications.
Concepts from image processing have been picked up and carried over to curved surfaces,
physically based modeling plays a central role, and aspects of computer aided geometry de-
sign have been incorporated. This paper aims at highlighting some of these developments,
with a particular focus on methods related to the mechanics of thin elastic surfaces. We pro-
vide an overview of different geometric representations ranging from polyhedral surfaces over
level sets to subdivision surfaces. Furthermore, with an eye on differential-geometric con-
cepts underlying continuum mechanics, we discuss fundamental computational tasks, such
as surface flows and fairing, surface deformation and matching, physical simulations, as well
as spectral and modal methods in geometry processing. Finally, beyond focusing on single
shapes, we describe how spaces of shapes can be investigated using concepts from Rieman-
nian geometry.
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1 Introduction

Over the last decades, surface models used in computer graphics have become successively
more complex. New hardware, such as laser range scanners for the acquisition of 3D ge-
ometries, and new software, such as for multi view reconstruction, provide high resolution
geometric models with triangulations consisting of millions of triangles, or point clouds con-
sisting of an even larger set of point measurements. Depending on the origin of these models
and the concrete application, different geometric representations are appropriate to process,
model, or animate the underlying surface geometries. On this background, the research field
of geometry processing has undergone a rapid development. In particular, physically based
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2 M. Rumpf and M. Wardetzky: Geometry Processing from an Elastic Perspective

modeling plays a crucial role, and concepts from continuum mechanics have been picked up
and adapted to the needs in computer graphics.

One overarching goal of geometry processing is the combination of valid physical mod-
els with efficient, near realtime simulations. Recently, it has become an established trend to
not sacrifice physical accuracy for computational efficiency. One important instance of this
trend is to work with reliable nonlinear models and to use geometric and physical insight
to accelerate algorithms instead of a brute force linearization. This provides a challenge for
many applications. The diverse approaches that we are going to present and compare here all
face this challenge in one way or another. E.g., when working with triangle meshes (or other
discrete geometric representations of smooth surfaces) a central goal is to provide structure
preserving, consistent, and convergent notions of discrete curvatures and discrete elastic ener-
gies. For subdivision surfaces, an open problem is to link the design of subdivision algorithms
with physical principles and to handle the high complexity of the underlying algorithms. If
one opts for an implicit representation of surfaces via level set methods, the computational
workload significantly raises from dimension two to three.

This paper highlights some of the ongoing developments in geometry processing, with a
particular focus on methods related to and motivated by the mechanics of thin shells. As a
disclaimer, we emphasize that the exposition in this paper should not be read as an objective
and balanced overview of geometry processing as a whole, but rather, as the title suggests, as a
personal perspective strongly biased by an eye on continuum mechanics, variational methods,
and partial differential equations. Even on this restricted research field we have to acknowl-
edge that we are unable to do any sort of justice to the plethora of ideas and developments
existing in the literature.

In our exposition, we review different representations of surfaces, ranging from parame-
terized and triangulated surfaces over subdivision surfaces to level sets and point clouds in
Section 2. In particular, we show how to model and discretize the most basic geometric
functionals and PDE operators, such as the Dirichlet energy, the Laplacian, and the Willmore
functional. Thereby, this section lays the foundation for the exposition of the models and
methods described in subsequent sections. Then, in Section 3, we review some surface flows
and surface fairing methods based on feature aware geometric diffusion. How to model the
stored elastic energy of a surface using a thin shell approach is discussed in Section 6. We
define membrane and bending energies on parameterized and implicit surfaces and discuss
discrete analogous of these energies using discrete exterior calculus. Applications to surface
matching and physical simulations are outlined. The spectral analysis of the Hessian of elastic
energies and the computation of eigenfrequencies and vibration modes are fundamental tools
in surface modeling and will be briefly presented in Section 7. Furthermore, in Section 8 we
anticipate a Riemannian perspective on the space of surfaces (i.e., a space in which each point
is a surface in R3), and we sketch the setup of a time discrete Riemannian calculus in this
space. Physically, the underlying Riemannian metric that we consider represents the rate of
physical dissipation accumulated along paths in shell space.

2 Different geometry representations and PDE approaches

The focus of this article is on geometry processing tools based on partial differential equations
and geometric functionals. In applications, different tools are implemented on different types
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of geometry representations. To emphasize the similarities and relations between these ap-
proaches, we discuss in this section some of the most basic differential operators and energy
functionals relevant to geometry processing, namely the Dirichlet energy, the Laplacian, and
the Willmore functional. Furthermore, we briefly sketch how these operators and functionals
can be spatially discretized.

The flat case. We briefly recall the Euclidean case. On a two dimensional domain Ω ⊂ R2

the Dirichlet energy of a function u : Ω→ R is defined as

WDirichlet[u] =
1

2

∫
Ω

|∇u|2 dx ,

where ∇ denotes the gradient operator. The weak form of the (negative) Laplace operator
−4 = −div∇ applied to a function u is then given as the first variation of Dirichlet energy.1

Indeed, using integration by parts one easily verifies that∫
Ω

−4uφ dx = ∂uWDirichlet[u](φ) =

∫
Ω

∇u · ∇φ dx (1)

for a sufficiently regular function u and for any smooth test function φ that is compactly
supported away from the boundary of Ω.

A simple model for a thin plate energy on the planar domain Ω and for a vertical displace-
ment u is given by Wplate[u] = 1

2

∫
Ω
|4u|2 dx. The first variation of this energy is given

using the bi-Laplacian as
∫

Ω
42uφ dx =

∫
Ω
4u · 4φ dx, or in weaker form∫

Ω

42uφ dx =

∫
Ω

∇w · ∇φ dx ,
∫

Ω

wφ dx =

∫
Ω

∇u · ∇φ dx , (2)

with w = −4u in the weak sense of (1).

Finite Element discretization in the flat case. With respect to a finite element discretiza-
tion of the above energies and differential operators, one considers a regular, (for the ease of
presentation) triangle mesh Th covering the domain Ω, which we assume for simplicity to be
polygonally bounded. Here h denotes the grid size defined as the maximal diameter of the tri-
angles T ∈ Th. Consider the space Vh of piecewise affine, continuous functions U on Ω. Each
function U is uniquely described by a vector Ū of nodal values on the vertices of the triangula-
tion. Now, the variation of the Dirichlet energyWDirichlet on discrete functions U gives rise to
a bilinear form LŪ · V̄ :=

∫
Ω
∇U ·∇V dx on nodal vectors, where L is the stiffness matrix. In

addition, taking into account the (lumped) mass matrix M with MŪ · V̄ :=
∫

Ω
Ih(U · V ) dx

(where Ih denotes the piecewise affine Lagrangian interpolation of the vertex values of a
function on Th), one denotes by −4hŪ = M−1LŪ the discrete negative Laplacian on nodal
vectors—in analogy to the above relation for the continuous Laplacian (1). Finally, based on
(2) a discrete bi-Laplacian on nodal vectors is given by42

hŪ = 4h4hŪ , which corresponds
to a discrete thin plate energyWh

plate[U ] = 1
2

∫
Ω

(Ih(4h(Ū)))2 dx.

In what follows, we adopt this calculus for a geometric setting.

1 Recall that the first variation of a nonlinear functional of u yields a first order approximation, i.e., a linear
functional with parameter u.
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4 M. Rumpf and M. Wardetzky: Geometry Processing from an Elastic Perspective

Smooth embedded surfaces. Let S ⊂ R3 be a smoothly embedded and oriented surface.
Let n denote the unit normal. Then the first and second fundamental forms on S are bilinear
forms acting on pairs (u, v) of tangent vectors of S, defined as

I(u, v) := 〈u, v〉R3 and II(u, v) := I(dn(u), v) ,

respectively. Here 〈u, v〉R3 denotes the standard Euclidean inner product and dn(u) is the
directional derivative of n in the direction of u. Notice that dn(u) is automatically tangential
since n has constant (unit) length. The first fundamental form measures the metric of S, while
the second fundamental form, by accounting for the change of normals, measures curvature.
Both first and second fundamental form are symmetric. The shape operator is the linear
mapping corresponding to the second fundamental form, i.e., II(u, v) = I(S(u), v). The
eigenvalues κ1 and κ2 are the principal curvatures. The Gauß curvature K and the mean
curvature h are defined as the determinant and trace of S, respectively.2

The analogue of the the Laplacian on S is the Laplace–Beltrami operator4S = divS∇S .
Its definition requires the notions of the gradient of functions f : S → R and the divergence
of tangential vector fields u on S . The former is defined via I(∇Sf, u) = df(u) and the latter
is defined as the (negative formal) adjoint of ∇S , i.e,

∫
S I(∇Sf, u)da = −

∫
S fdivS(u)da,

where da denotes the area element of S. With these definitions, one can define the Dirichlet
energy of functions WDirichlet[f ] = 1

2

∫
S |∇Sf |

2 da , in perfect analogy to the flat case.
Furthermore, as in the flat case, the weak formulation of the Laplace–Beltrami operator only
requires the notion of gradient, i.e.,∫

S
−4Sfφ da = ∂fWDirichlet[u](φ) =

∫
S
∇Sf · ∇Sφ da (3)

for smooth functions φ : S → R that are compactly supported away from the boundary of
S. Instead of scalar functions, we can consider vector valued functions and apply differential
operators to all components of the function. With a slight abuse of notation, we also use x to
denote the vector valued mapping x : S → R3, which maps every point x onto itself. The
fundamental geometric insight is that 4Sx = −hn, where hn is the mean curvature vector.
The vector hn is also the gradient of the area functional A[x] =

∫
S

da with respect to the
L2 inner product. Hence, the associated gradient flow of the area functional is the geometric
heat equation ∂tx − 4Sx = 0. The nonlinear counterpart of the thin plate energy is the
Willmore energyWWillmore[x] = 1

2

∫
S h

2 da.3 The associated gradient flow is the Willmore
flow ∂tx = (4Sh + h(|S|2 − 1

2h
2))n, where |S| denotes the Frobenius norm of the shape

operator.
In practice, triangle meshes or what is known as polyhedral surfaces are a prevalent dis-

crete representation of surfaces on a computer. Using this representation, one can then, just
like in the flat case, construct stiffness and mass matrices as described above. We outline this
description below. One challenge is to define the second fundamental forms in this case, which
we also discuss below. Before doing so, we briefly recall how first and second fundamental
form and the Laplace–Beltrami operator are represented in local parameterizations.

2 Notice that by defining mean curvature as h = trS, we deviate from other authors that use h = 1
2

trS.
3 Notice that as long as the surface boundary is held fixed, our formulation of Willmore energy has the same

critical points as the Möbius-invariant formulation
∫
S(κ1 − κ2)2 da.
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Local parameterizations. Given a surface S ⊂ R3, one cannot in general obtain a global
parameterization, i.e., a diffeomorphism from a region in the plane to S, which covers all
of S, even for simple surfaces such as the sphere. In general, one can only work with local
parameterizations or what is known as coordinate charts.

1

5

10

Fig. 1 Bounded distortion mapping of
Lake Superior. Original mesh (left) is de-
formed by moving island and boundaries.
Bounded distortion maps (right) avoid tri-
angle flips and high distortion. (Image
courtesy of Y. Lipman.)

Working with local parameterizations, however,
requires to account for coordinate changes, which is
a tedious task in practice. Therefore, it is often desir-
able to work with global representations of surfaces,
such as triangle meshes or level set representations,
which do not require any particular parameterization.
Moreover, the intrinsic, i.e., parameterization inde-
pendent, formulation of differential operators is of-
ten more natural and convenient. Nonetheless, vari-
ous applications, such as texture mapping, do require
local parameterizations, and higher order discretiza-
tion methods such as subdivision finite elements use
local parameterizations over control meshes as well.
There is an extensive literature (see, e.g., [1] and ref-
erences therein) on the computation of local parame-
terizations, dealing in particular with the issue of min-
imizing distortion of lengths, angles, and area. Since
distortion is unavoidable in general when mapping a
nonplanar to a planar domain, this poses the question if one can at least bound the amount
of distortion introduced. For the case of triangle meshes and piecewise linear continuous bi-
jections to a planar region, this problem has recently been solved by Lipman for the case of
aspect ratio distortion [2], see Figure 1. A detailed discussion of local parameterizations is
beyond the scope of this paper.

Returning to representations of differential operators and fundamental forms in local co-
ordinate charts of smooth surfaces, let x : Ω → R3, ξ 7→ x(ξ) be a local parameteriza-
tion of S defined on a parameter domain Ω ⊂ R2. Then the normal n(x) is given by
n(x) = ∂ξ1x × ∂ξ2x/‖∂ξ1x × ∂ξ2x‖ and the first fundamental form on the parameter do-
main is expressed by g(v, w) = Dxv · Dxw, where Dx(ξ) ∈ R3,2 is the Jacobian of the
parameterization x. The associated matrix is g = (gij)i,j=1,2 = DxTDx and its inverse is
g−1 = (gij)i,j=1,2. With the metric at hand, the integral of a function f on x(Ω) is given
by
∫
x(Ω)

f da =
∫

Ω
f ◦ x√g dξ. For the shape operator S defined above we obtain from

S(x)Dxv ·Dxw = D(n ◦ x)v ·Dxw the representation SΩ = g−1DxTD(n ◦ x) as a 2× 2
matrix defined on the chart. The above mentioned differential operators can also be expressed
on the chart. For the tangential gradient we obtain ∇Sf(x) = Dxg−1∇(f ◦ x) and for the
(tangential) divergence operator on S applied to a tangential vector field v ◦ x = Dxv one
deduces the parametric representation (divSv) ◦ x = 1√

gdivΩ(v
√
g). Hence, the Laplace

Beltrami operator is given by4Su = divS∇Su = 1√
gdivΩ

(
g−1∇Ω(u ◦ x)

√
g
)
.

Triangulated surfaces. Following the discretization procedure in the flat Euclidean case,
we consider a triangulated surface Sh consisting of flat triangles. We denote by Vh the
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6 M. Rumpf and M. Wardetzky: Geometry Processing from an Elastic Perspective

space of piecewise affine, continuous functions on Sh. As before, the variation of the dis-
crete Dirichlet energyWh

Dirichlet = 1
2

∫
Sh |∇ShU |

2 da for functions U ∈ Vh yields a bilinear
form LŪ · V̄ :=

∫
Sh ∇ShU · ∇ShV da on nodal vectors Ū and V̄ with stiffness matrix L.

Here, the (discrete) surface gradient ∇ShU is constant on each triangle T of Sh and lies

α ij

j

i
ej

ei

in the plane of the triangle, which coincides with the local tangent
space. The entries of the local stiffness and mass matrix can be
computed as follows. Denote by v0, v1, v2 the vertices of T and
by ej the oriented edge opposite of vj for j = 0, 1, 2. Then we
obtain the local stiffness matrix (Llocal

h )ij = 1
4ei · ej |T |

−1 and the
local (lumped) mass matrix (Mlocal

h )ij = 1
3 |T |δij , which have to be

assembled to their global counterparts in the usual way. Notice that
(Llocal

h )ij = − 1
2cot(αij)), where αij = ∠(ei, ej) denotes the (unoriented) angle between ei

and ej in T . The latter representation is know as the cotangent formula [3, 4]. Analogously,
we define the lumped mass matrix MŪ · V̄ :=

∫
Sh Ih(U · V ) da on the discrete surface Sh.

From the discrete analog of (3) we deduce the definition of the discrete Laplace–Beltrami
operator −4ShŪ = M−1LŪ on nodal vectors Ū , see [5]. Convergence of this approach
for polyhedral surfaces that approximate (but do not necessarily interpolate) a smooth limit
surface has been established in [6].

Discrete curvatures and first and second fundamental forms. One challenge for poly-
hedral surfaces is to provide consistent notions of curvatures and second fundamental forms,
i.e., notions that converge (in an appropriate topology or in a measure theoretic sense) to their
smooth counterparts, given a smooth limit surface S ⊂ R3.

One computationally popular model for discretizing the second fundamental form is Grin-
spun’s et al. discrete shells model [7], which offers a discrete version of mean curvature asso-
ciated with edges. In this view, mean curvature is measured as the (signed) dihedral angle of a
an edge, multiplied by the length of the edge. This view corresponds to an elegant mathemati-
cal model—the mean curvature measure arising form the theory of normal cycles [8]. Normal
cycles generalize the notion of unit normal bundles of oriented, smooth submanifolds to more
general cases, such as (boundaries of) convex bodies and closed polyhedral surfaces. E.g., for
a convex set S ⊂ R3, the notion of a unit normal at a point p ∈ S is replaced by the normal
cone Cp = {n ∈ R3 | ‖n‖ = 1 , n · (q− p) ≤ 0 ∀q ∈ S}. The normal cycle N(S) of a convex
body S is then associated with the set {(p, n) | p ∈ S , n ∈ Cp} ⊂ R3×S2. In particular, this
construction applies to tetrahedra in R3. To define the normal cycle of the geometric realiza-
tion of a 3-dimensional simplicial complex in R3, one starts from the definition of normal cy-
cles for 3-simplices (tetrahedra) and successively builds up the normal cycle of the entire com-
plex by requiring the inclusion-exclusion property N(A) +N(B) = N(A∪B) +N(A∩B).

Much like for the case of embedded smooth surfaces, one can define an area measure
as well as measures for mean and Gauß curvatures for normal cycles, giving rise to discrete
curvatures of polyhedral surfaces. In particular, discrete Gauß curvature, associated with mesh
vertices, coincides with the widely used angle deficit, i.e., Kp = 2π −

∑
i αi, where αi are

the interior angles at a vertex p of the triangles meeting at p. Moreover, Cohen–Steiner and
Morvan used the theory of normal cycles to provide a notion of discrete shape operators for
polyhedral surfaces [9, 10]. This notion turns out to converge in the sense of measures. A
similar notion that also converges in the sense of measures, leading to a consistent notion

Copyright line will be provided by the publisher



gamm header will be provided by the publisher 7

of the Willmore functional on polyhedral surfaces, has been proposed by Hildebrandt and
Polthier [11]. Convergence in the sense of measures can be established since the biasing local
effect of edge directions tends to decrease when averaged over large enough regions. Indeed,
convergence can be shown by letting the averaging region shrink at a much lower rate than
the refinement of triangles increases within that region. The averaging effect is much more
pronounced for unstructured meshes (e.g., Delaunay triangulation) than it is for structured
meshes, see [12].

A slight modification of these approaches leads to the following formulation of discrete
second fundamental forms. We elaborate on this construction, since it leads (i) to a formu-

n3

n1

n2

m12
m31

m23

1

3

2

lation of second fundamental forms that is constant per triangle and
(ii) to a discrete formulation of elastic energies that structurally re-
sembles the smooth setting. For an edge e = T ∩ T̃ between two
triangles, define ne as the normalized sum of the unit normals be-
longing to the triangles T and T̃ , and associate ne with the midpoint
of e. For boundary edges, consider the respective triangle normal.
With normals associated to edge midpoints, one obtains a vector-
valued discrete 1-form dn (i.e., a linear map from oriented line seg-
ments to R3). Indeed, fixing a triangle T with edges e1, e2, e3 and
corresponding edge normals n1, n2, n3 one finds that dn(mij) =

∫
mij

dn = nj − ni, where
mij is the line segment connecting the midpoint of ei with that of ej . Using the vector identity
ek = −2mij , where k is the complementary index to i and j in T , one accordingly defines
IIT,k := IIT (ek, ek) := 2(ni − nj) · ek as the action (associated with a triangle T ) of the
second fundamental form on the edge vector ek. Assembling contributions over all three tri-
angle edges and using the fact that in dimension two a symmetric bilinear form is uniquely
determined by its action on three different vectors, leads to a discrete second fundamental
form that is constant per triangle:

IIT =
1

8|T |2
3∑
i=1

(IIT,j + IIT,k − IIT,i) ti ⊗ ti , (4)

where the indices j = i + 1 (mod 3) and k = i + 2 (mod 3) refer to the cyclic ordering of
edges of T , ⊗ denotes the outer product, ti is the result of clockwise rotating edge ei by π/2
in the plane of T , and |T | denotes the area of T .

Repeating the above construction for the first fundamental form, one defines IT,k :=
IT (ek, ek) := |ek|2 and thus

IT =
1

8|T |2
3∑
i=1

(IT,j + IT,k − IT,i) ti ⊗ ti . (5)

In the computational mechanics community this formulation of the first fundamental form is
known as the constant strain triangle.

Subdivision Finite Elements. As long as smooth surfaces are approximated by triangu-
lar meshes, one is restricted to the discretization of PDEs and variational problems on the
surface via piecewise affine continuous finite elements as exposed above. Alternatively, a
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8 M. Rumpf and M. Wardetzky: Geometry Processing from an Elastic Perspective

Fig. 2 The first two subdivision steps starting from the control mesh and the resulting limit surface are
visualized (left). Furthermore, subdivision bases functions are rendered for a node with valence 4 (left)
and 6 (right), respectively. (Image courtesy of R. Perl.)

triangular mesh could be considered as a control mesh of a much smoother surface repre-
sentation. Such a representation can be generated via an iterative refinement of the control
mesh using a subdivision scheme. Starting from the control mesh, a single subdivision step
consists of a mesh refinement, followed by replacing every vertex of the refined mesh by
a weighted sum of vertices in the support mask of a given one. In their pioneering work,
Catmull and Clark [13] proposed such a scheme for quadrilateral meshes. A subdivision
method for triangular grids based on a successive refinement of every triangle into four con-
gruent triangles was presented by Loop [14] (see Fig. 2). If restricted to control patches with
valence six, i.e., a situation where every vertex is shared by six adjacent triangles, Loop’s

Fig. 3 The equation 42
Su + u = f is

solved on a surface using subdivision fi-
nite elements based on Loop subdivision
with color coded f (left) and u (right).
(Image courtesy of R. Perl.)

subdivision scheme is equivalent to the construction
of bi-variate box-splines, and thus the limit surface is
C2; in particular, it can be constructed explicitly from
the vertex positions of a local patch of the control
mesh. For general meshes with different valences, the
limit surface is stillC1∩H2, and thus the mean curva-
ture is still in L2. Mandal, Qin, and Vemuri [15] used
subdivision surfaces for dynamic surface modeling
via spring forces attached to the control points. Sub-
division schemes are not only useful for the smooth
approximation of surfaces using a local parameteriza-
tion over flattened control meshes. They can be ap-
plied to general scalar values or vectors assigned to
the control vertices in order to describe smooth scalar
or vector valued functions. In particular, the conforming finite element approximation of ge-
ometric functionals involving second derivatives is possible, e.g., the discrete weak definition
of the geometric bi-Laplacian on the limit surface S∞h of a control mesh Sh is given by∫

S∞h
42
S∞h

u φ da =

∫
S∞h
4S∞h u4S∞h φ da (6)

for a subdivision finite element function u and all subdivision finite element test functions φ
(see Eq. (2)). Figure 3 shows the result for solving the equation 42

Su + u = f on a surface
using subdivision finite elements. Cirak, Ortiz, and Schröder [16] investigated a thin-shell
energy using subdivision finite elements to describe the surface geometry and to compute
smooth displacement fields in a conforming finite element Galerkin approach. They applied
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this approach to the Kirchhoff–Love theory of thin shells using Loop’s subdivision scheme. In
this approach, for the assembly of finite element matrices on valence six control patches, the
explicit spline representation can be retrieved and the computations can be performed on the
control mesh as a parameter domain of the actual subdivision limit surface. In the case of gen-
eral valences, one uses an appropriate quadrature formula with only interior quadrature points
and applies the subdivision scheme recursively until all quadrature points lie in a valence six
patch and thus the explicit representation again applies (see Fig. 2). In [17] Grinspun, Krysl,
and Schröder proposed an adaptive subdivision finite element scheme in order to accelerate
computations.

Implicit surfaces / level sets. Now we consider surfaces S described as level sets of a
function w, i.e., Sc = [w = c] := {x ∈ R3 |w(x) = c}, where we assume w : R3 → R to be
smooth with ∇w 6= 0 on Sc. Then, the normal is given as n = |∇w|−1∇w and for the shape
operator (trivially extended to a 3×3 matrix) we obtain Sext = DnP = D(|∇w|−1∇w)P =
|∇w|−1PD2wP , where P (x) = P [w](x) := 1−n(x)n(x)T denotes the projection onto the
tangent space. Thus for the mean curvature one obtains h = tr(DnP ) = divn. The tangential
gradient of a function f : R3 → R and the tangential divergence of a vector field v : R3 → R3

are given by∇Scf = P∇f and divScv = (P∇) ·v, respectively. In the implicit surface case,
one does usually not perform integration over a single surface; instead, one integrates over a
bundle of surfaces [c− < w < c+] =

⋃
c∈[c−,c+] Sc, in which case the coarea formula implies

that ∫ c+

c−

∫
Sc
f da dc =

∫
[c−<w<c+]

f |∇w| dx ,

with |∇w| representing the density of level sets. As a consequence, the Dirichlet energy of a
function u : R3 → R integrated over a bundle of surfaces {Sc | c ∈ [c−, c+]} can be computed
as

Wc−,c+

Dirichlet[u] =
1

2

∫
[c−<w<c+]

(P∇u) · ∇u |∇w| dx .

Likewise, one obtains the weak definition for the Laplace–Beltrami operator as∫
[c−<w<c+]

−4Swuφ |∇w| dx = ∂uWc−,c+

Dirichlet[u](φ) =

∫
[c−<w<c+]

(P∇u) · ∇φ |∇w| dx (7)

for compactly supported, smooth functions φ : R3 → R, from which the explicit representa-
tion 4Swu = 1

|∇w|div(|∇w|P∇u) is deduced for smooth u. Taking into account the level
set equation

∂tw + |∇w|v = 0 ,

which describes the evolution of the implicit surfaces Sw with a speed v in direction of the
normal field n = |∇w|−1∇w, we obtain for the surface evolution of mean curvature motion
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10 M. Rumpf and M. Wardetzky: Geometry Processing from an Elastic Perspective

Fig. 4 Level set representation of a complex dragon model on a thin narrow band using a cutting plane
intersecting the dragon surface. The underlying spatial resolution is 1986× 1323× 1104.

∂tw + |∇w|div(|∇w|−1∇w) = 0. Finally, the Willmore energy integrated over a bundle of
surfaces {Sc | c ∈ [c−, c+]} is given by

Wc−,c+

Willmore[w] =
1

2

∫
[c−<w<c+]

div(|∇w|−1∇w)2|∇w| dx .

We emphasize that in the level set formulation, PDE problems on different surfaces Sc and Sc̃
are still decoupled even though one integrates over bundles of surfaces.

Level set Finite Elements. Discretizing level set equations is based on a triangulation Th of
the computational domain Ω ⊂ R3, where h again denotes the grid size. Now, let Vh denote
the space of piecewise affine, continuous functions on this 3D triangulation. Then, given a
discrete level set function W ∈ Vh the stiffness and matrix matrix are defined by LŪ · V̄ =∫
D
P [W ]∇U · ∇V |∇W | dx and MŪ · V̄ =

∫
D
Ih(UV )|∇W | dx, respectively. Here, as

before, Ih is the affine Lagrangian interpolation on Th and Ū , V̄ are again the nodal vectors
corresponding to discrete functions U, V ∈ Vh. Hence, one obtains for the discrete Laplacian
on a bundle of surfaces in the level set context−4hŪ = M−1LŪ . The finite element analysis
of PDEs on level sets is discussed in [18]. For the general concepts of the level set method we
refer to the textbooks by Sethian [19] or Osher and Fedkiw [20]. If one is primarily interested
in a PDE on a single surface or its geometric evolution, a narrow band approach is advisable,
where one chooses as a computational domain only a small neighborhood of the surface of
interest. The efficient encoding of narrow bands on very high-resolution grids can be done
with suitable hierarchical sparse grid structures as proposed in [21]. Fig. 4 depicts the narrow
band geometry for a highly detailed surface model.

Point clouds. In practice, e.g., when using a 3D scanner, surfaces are sometimes given as
raw point data—without any connectivity or mesh structure. There exist numerous algorithms
for reconstructing a surface from a point set, such as discrete computational geometry methods
that provide triangulated surfaces, e.g., by using Delaunay triangulations, Voronoi diagrams,
or alpha complexes, [22–24]. Other approaches base reconstruction on implicit surfaces, e.g.,
by using radial basis functions (RBFs) or moving least squares [25, 26]. If the points in
the point set are additionally oriented, i.e., come with a unit normal per point, then one can
use a PDE-based approach for reconstruction by solving a simple Poisson problem [27] (see
Figure 5). In summary, these methods transform point clouds into surface representations
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Fig. 5 Poisson Surface Reconstruction proposed in [27] for high quality surface reconstruction from
oriented points clouds. (Image courtesy of M. Kazhdan.)

discussed above, whereafter one works with the tools available for these representations for
solving PDEs or formulating geometric energy functionals. Another approach is to avoid a
transformation step altogether, such as, e.g., in Belkin’s et al. work [28], where the authors
use short-time properties of the heat kernel in R3 for constructing Laplacians on point clouds.

Smooth and Discrete Exterior Calculus. On smooth or polyhedral manifolds there usually
does not exist a global parameterization. Therefore, it is desirable to express differential oper-
ators in an invariant manner, i.e., independent of any particular local parameterization. In the
smooth setting, one prevalent choice is the language of exterior calculus on an abstract mani-
foldM. Exterior calculus starts with the notion of smooth differentiable k-forms. Restricted
to a point x ∈ M, a k-form ωx is an alternating multilinear form, i.e., ωx ∈ Altk(TxM),
where TxM is the tangent space at x. Denoting the space of smooth k-forms by Ωk(M),
one then considers the exterior derivative d : Ωk(M) → Ωk+1(M) and the wedge product
∧ : Ωk(M) × Ωl(M) → Ωk+l(M). Since this is not the place to elaborate on the various
properties of these operators, we content ourselves with pointing out that exterior differentia-
tion is a generalization of vector calculus in R3, i.e., of operators such as grad and div; notice,
however, that exterior differentiation does not require the notion of a metric. Likewise, the
wedge product is a generalization of the cross product on R3. IfM is additionally equipped
with a Riemannian metric g, then this metric naturally gives rise to norms of k-forms and
to measuring volume on M. Equipped with a Riemannian metric, one defines the volume
form dvolg and the Hodge star operator ? : Ωk(M) → Ωn−k(M), where n = dim(M).
These objects are related through ω ∧ (?ω) = ‖ω‖2dvolg . On two-dimensional Riemannian
manifolds—i.e., the case of interest here—the Hodge star on 1-forms simply corresponds to a
rotation by π/2, which, if we identify vectors and 1-forms, reveals a simple geometric mean-
ing of this operator. Likewise, the Hodge star of a 0-form (i.e., a smooth function) f yields
?f = f dvolg , i.e., a f -weighted volume form. A Riemannian metric additionally gives rise
to an L2 inner product of k-forms, which, using the Hodge star, can conveniently be ex-
pressed as (ω, η)L2 =

∫
M ω ∧ (?η) (whenever this integral is defined). The L2 inner product

then gives rise to the codifferential δ : Ωk(M) → Ωk−1(M) as the (formal) adjoint of d,
i.e, (dω, η)L2 = (ω, δη)L2 . In terms of the Hodge star, the codifferential can be expressed
as δ = (−1)n(k+1)+1 ? d?. Finally, the Hodge–Laplace operator on k-forms is defined as
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12 M. Rumpf and M. Wardetzky: Geometry Processing from an Elastic Perspective

4M = δd+dδ. Notice that, just as in the Euclidean case,4M is (formally) self-adjoint with
respect to (·, ·)L2 .

Mimicking the above on simplicial manifolds, Desbrun, Hirani, Leok, and Marsden intro-
duced discrete exterior calculus (DEC) [29]. In this case, k-forms are naturally associated
with simplicial k-cochains Ck, i.e., duals to the space of simplicial k-chains Ck (which in
turn are defined as formal R–linear combinations of k-simplices). The role of exterior differ-
entiation is then canonically taken by the simplicial coboundary operator δ : Ck → Ck+1.
For constructing a discrete Hodge star operator, Hirani et al. consider the circumcentric dual
complex K∗ of a simplicial complex K. This dual construction gives rise to an operator
∗ : Ck → Cn−k taking primal chains in K to dual chains in K∗ and vice versa. The discrete
Hodge star ? : Ck → Cn−k is then defined as a (properly weighted) dual of ∗ : Ck → Cn−k.
In analogy to the smooth setting, one then defines the dual of the coboundary operator by
δ∗ := (−1)n(k+1)+1?d?, mappingCk toCk−1, and the discrete Laplacian as4 := δ∗δ+δδ∗.
For the Laplacian acting on 0-cochains (i.e., discrete functions defined at vertices), one exactly
recovers the cotangent operator from the FE setting described above. An alternative approach
for defining δ∗ (and therefore 4) is, as the the smooth case, to consider L2-inner products
(·, ·)L2 on k-cochains and to define δ∗ as the dual of δ with respect to this inner product.
Indeed, an appropriate choice of inner products leads to the same δ∗ (and hence to the same
Laplacian) as the one arising from the discrete Hodge star. Using the inner product approach
additionally leads to a construction of Laplacians on discrete surfaces with general polygonal
(not necessarily triangular) faces [30]. The diagonal Hodge star approach of DEC, in turn,
can by utilized for mesh optimization and for improving numerical accuracy by working with
Hodge stars resulting from dual meshes different from circumcentric duals—see the work of
de Goes, Mullen, Desbrun, et al. [31, 32].

In a similar spirit to DEC, Arnold, Falk, and Winther have developed Finite Element Ex-
terior Calculus (FEEC) [33]. One of the main principles there is to avoid an explicit con-
struction of the formal dual of d and instead use a weak formulation on suitable finite element
spaces, i.e., instead of solving δσ = ω, one considers the weak formulation (ω, τ)L2 =
(σ, dτ)L2 , leading to a mixed formulation for the Hodge Laplacian. For piecewise linear
functions, DEC and FEEC share various similarities.

The approaches of DEC and FEEC have in common a certain trend to consider structure
preserving discretizations. For the case of partial differential equations, the benefit of structure
preservation appears to be the resulting stable discretizations. A similar observation applies
to geometry: For example, the structure of special smooth surfaces, such as minimal surfaces,
surfaces of constant mean curvature, or surfaces of constant negative Gauß curvature, is gov-
erned by nonlinear PDEs, such as the KdV equation, that give rise to completely integrable
systems, and (one branch of) the field of Discrete Differential Geometry (DDG) searches for
discretizations that preserve the underlying (integrable) structure of the smooth case. For
readers interested in this aspect, we refer to [34–36].

Finally, with regards to structure preservation, there are certain limits to what one is able to
achieve in the discrete case when trying to mimic all properties of the smooth setting. E.g., for
the Laplace–Beltrami operator, it has been shown in [37] that there exists no discrete Laplacian
that possesses all properties of the smooth one. Indeed, the main hurdle in the discrete setup
is to construct Laplacians that are convergent and satisfy the maximum principle.
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3 Surface Fairing and Surface Flows

In physics, diffusion is known as a process that equilibrates spatial variations in concentra-
tion. For a (noisy) concentration u0 on a domain Ω ⊂ R2 the heat equation ∂tu − 4u = 0
with natural boundary conditions describes a scale of representations {u(t)}t∈R+ of the initial
values u, which gets successively coarser for t→∞, thereby successively smoothing out the
initial data.

Isotropic diffusion / mean curvature flow. It is near at hand to ask for analogous strate-
gies for the fairing of perturbed and noisy surface geometries S0, and this naturally leads
to mean curvature motion ∂tx − 4Sx = 0 using the fact that hn = −4Sx. There exist
numerous implementations of this flow, going back at least to Brakke’s surface evolver [38].
Discretizing this evolution problem explicitly in time, one obtains a first simple fairing scheme
xn+1 = xn− τ4Snxn, with xn denoting the identity on the surface Sn. In order to speed up

Fig. 6 The smoothing of an ini-
tial surface (left) by time discrete
mean curvature motion (right)
using the implicit fairing ap-
proach by Desbrun et al. [39].
(Image courtesy of M. Desbrun.)

this scheme and to improve its robustness, Desbrun et al. [39]
considered the implicit scheme xn+1 = xn − τ4Snxn+1

(see Fig. 6), similar to the one proposed by Dziuk [40],
where the Laplace–Beltrami operator is still evaluated at
the old time step. The mean curvature motion model is
known as the L2 gradient flow of the surface area A(S), and
d
dtA(S(t)) = −

∫
S(t)

h2 da (see [41]), which is one indi-
cation for the strong regularizing effect of mean curvature
motion. Unfortunately, mean curvature motion not only de-
creases the geometric noise due to imprecise acquisition, but
it also smoothes out geometric features, such as edges and
corners. Hence, a model is required that improves a simple
high pass filtering. Here image processing methodology can
be used.

Anisotropic diffusion. For the case of images, Perona and Malik [42] proposed a nonlinear
diffusion method based on the PDE ∂tu − div(a(|∇u|)∇u) = 0 with a diffusion coefficient

a(s) =
(

1 + s2

λ2

)−1

that suppresses diffusion in areas of high gradients with an edge classifier
constant λ > 0, which leads to sharpening by backward diffusion whenever |∇u| ≥ λ,
whereas the image is smoothed elsewhere by forward diffusion (see [43]). To overcome the
ill-posedness of the original Perona–Malik problem, Catté et al. [44] proposed a regularization
method, where the diffusion coefficient a(·) is evaluated on a prefiltered image intensity uσ =
Gσ ∗ u. Weickert [45] improved this method using an anisotropic diffusion tensor, where
the Perona–Malik-type diffusion is concentrated in the gradient direction of the prefiltered
image uσ . This implies an additional tangential smoothing along edges. This approach can be
transferred to geometry processing. Thereby edges and corners are classified using the shape
operator SSσ of a prefiltered surface Sσ . Close to an edge, the principal direction of curvature
corresponding to the dominant principal curvature points in the direction orthogonal to the
edge.
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14 M. Rumpf and M. Wardetzky: Geometry Processing from an Elastic Perspective

Fig. 7 Mean curvature motion fairing is compared with anisotropic geometric diffusion for a noisy
triangular surface (left), to a level set of a 3D echocardiographical image of a ventricle of the human
heart (middle) and to a a noisy level set model of a dragon using a narrow band approach for high
resolution surfaces (right).

Anisotropic diffusion of triangulated surfaces. In case of an explicit surface representa-
tion, one obtains the evolution problem

∂tx− divS(Aσ∇Sx) = 0 ,

where Aσ = a(Sσ) is a diffusion tensor, which is diagonal with respect to the orthonormal

Fig. 8 Result of the discrete ge-
ometry approach to anisotropic
diffusion (right) for a noisy octa-
hedron (left). (Image courtesy of
K. Hildebrandt.)

basis of principal curvature directions viσ on Sσ , that is
Aσviσ · vjσ = δija(κiσ) with κiσ denoting the correspond-
ing principal curvatures. Following the general discretiza-
tion procedure outlined in Section 2, the method can be dis-
cretized on triangular meshes using affine finite elements. A
similar approach has been investigated by Hildebrandt and
Polthier [46]. They used a discrete shape operator on triangu-
lar meshes to model a discrete anisotropic diffusion process
directly on the triangular mesh as demonstrated in Fig. 8. A
subdivision finite element implementation of anisotropic dif-
fusion was proposed by Bajaj and Xu [47]. Fig. 7 shows
results of the anisotropic diffusion method.

Anisotropic diffusion of implicit surfaces / level sets. The above approach can be adapted
to the processing of level set surfaces. The advantage of level set formulations is their ability
to deal with pinching off and topology changes due to singularities that the flow can develop
in finite time. Denote by w0 : Ω → R the implicit representation of a surface S0 (S0 =
[w0 = 0]). Then one asks for a family {w(t)}t>0 of denoised level set functions that solves
the anisotropic diffusion problem

∂tw − |∇w|div

(
Aσ
∇w
|∇w|

)
= 0

with natural (no flux) boundary conditions on ∂Ω and initial data w(0) = w0. In this case
Aσ = a(Sext

σ ) − nσ ⊗ nσ with Sext
σ denoting the extended shape operator of a smoothed

representation of the level set function w and nσ denoting the associated smoothed normal.
As a smoothing operator, at every x ∈ Ω, one might consider the L2 projection of w onto the
space of quadratic polynomials in a ball Bσ(x). Finally, spatial discretization can be achieved
via finite element discretization of the computational domain (see Section 2). Figure 7 shows
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Fig. 9 Willmore flow on triangulated meshes when working in curvature space, see [54]. (Image
courtesy of K. Crane.)

the application of the anisotropic diffusion method in the context of 3D medical imaging [48].
Furthermore, the method can be applied to surfaces with large amounts of geometric detail,
when the implementation is based on hierarchical sparse narrow band structures [49].

Higher order geometric flows. Mean curvature flow, as discussed above, corresponds to
a second order PDE. As such, it can only accommodate for positional boundary conditions,
whereas prescribing tangential boundary conditions is not possible. This poses serious re-
strictions when attempting to construct surfaces with tangential continuity, e.g., for surface
restoration or inpainting. This problem can be handled by working with higher order flows,
such as surface diffusion, ∂tx − (∆h)n = 0, see, e.g., Xu et al. [50] (and Schneider and
Kobbelt [51] for a similar earlier approach).

A prominent fourth order flow arises from gradients of the Willmore energy 1
2

∫
S(h)2 da.

The resulting flow was, e.g., investigated by Yoshizawa and Belyaev [52] (using a discretiza-
tion of the Euler–Lagrange equations), by Bobenko and Schröder (using a discrete geometric
approach that preserves the Möbius invariance of the smooth formulation

∫
S(κ1 − κ2)2 da),

and in [53] (using a finite element formulation). All of these methods face the problem of time
step restrictions. By working in curvature space instead of in position space, Crane et al. [54]
recently proposed a formulation of Willmore flow for triangulated surfaces that allows for
large time steps while preserving the quality of the input mesh, see Figure 9. Their approach
can also be used for highly efficient surface fairing while preserving mesh quality.

4 Elastic Energy of Thin Shells

When surfaces are deformed, different types of material distortions are observed. To analyze
those distortions from a continuum mechanics perspective, we view surfaces as thin elastic
shells Sδ , defined as a layer of material of thickness δ around the center surface S, i.e.,

Fig. 10 Tangential (left) and bend-
ing (right) distortion.

Sδ = {x+ sn(x) |x ∈ S, −δ ≤ s ≤ δ} .

For small thickness δ one mainly distinguishes (i) tangen-
tial distortion caused by in-layer (tangential) shear, com-
pression, or expansion and (ii) (transversal) shear caused
by normal bending. With respect to applications in ge-
ometry processing one is often not interested in the vol-
umetric deformation of the thin layer but in the effective behavior of the thin shell in the
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asymptotical limit for vanishing thickness. In this limit the two types of deformation energies
scale differently with respect to the thickness δ and the associated deformation energies solely
refer to the geometry of the undeformed and deformed surfaces.

Tangential distortion energy. Let S ⊂ R3 be a smooth, embedded surface. Consider a
deformation φ : R3 → R3 (which we assume to be a diffeomorphism), and consider the re-
sulting deformed surface φ(S). The mechanically relevant deformation tensor is the frame
indifferent Cauchy–Green strain tensor G[φ] = DφTDφ, which, when restricted to the tan-
gent space of S, represents the pullback of the first fundamental from of the deformed surface
to the undeformed configuration. This tangential component is defined by

IS(Gtan[φ](u), v) = Iφ(S)(DSφ(u), DSφ(v))

for all pairs (u, v) of tangent vectors at a point of S.4 When x : Ω → S denotes a local
parameterization, let ψ = φ ◦ x : Ω → R3. Then the first fundamental forms of S and φ(S)
are represented by gS = DxTDx and gφ(S) = DψTDψ, respectively (see Section 2), and
Gtan[φ] takes the form GΩ[φ] = (gS)−1gφ(S). The impact of tangential distortion on the
elastic energy is reflected by a tangential distortion (membrane) energy, the energy density of
which depends solely on the Cauchy–Green tensor and scales linearly in the thickness δ, i.e.,

Wmem[φ] = δ

∫
S
Wmem(Gtan[φ]) da , (8)

where the non-negative energy density Wmem acts on symmetric linear operators. For Wmem

we require that (i) Wmem(1) = 0, (ii) DWmem = 0 at the identity matrix, and (iii) D2Wmem

is positive definite at the identity matrix. These requirements correspond to the fact that if
the shell is in a stress free configuration, then the deformation identity 1 is a minimizer of
Wmem and thus (i)Wmem[1] = 0 and (ii) dWmem[1] = 0. Additionally, we assume (iii) that
the energy is strictly convex (modulo rigid body motions) in a neighborhood of a minimizer.
These assumptions capture most thin elastic materials [55].

Bending energy. Bending of thin shells is described in terms of the change in the variation
of the normal on the surface. Hence, to quantify bending, one compares the shape operator
Sφ(S) on the deformed surface with the shape operator SS on the undeformed surface. To this
end, one first pulls back Sφ(S) to S by defining a linear operator S[φ] via

IS(S[φ](u), v) = Iφ(S)(Sφ(S)(DSφ(u)), DSφ(v)) ,

for all pairs (u, v) of tangent vectors of S. Then one defines the relative shape operator as

Srel[φ] = S[φ]− SS .

Given a local parameterization x : Ω → S , the relative shape operator is represented as
SΩ

rel[φ] = g−1(D(φ ◦ x)TD(nφ ◦ φ ◦ x) − DxTD(n ◦ x)). If φ is locally isometric, i.e., if

4 HereDS = d denotes exterior differentiation. We useDS as it is more common in the mechanics community.
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Fig. 11 Two predominant types of deformation for a surface model (left) in the deformed configuration
using a discrete geometry approach on triangular meshes: tangential stretching of shearing (middle,
0 0.001) and normal bending (right, 0 0.1).

Gtan[φ] = 1, then Srel[φ] measures pure bending; otherwise, the relative shape operator also
reflects tangential distortion. A suitable bending energy is then given by

Wbend[φ] = δ3

∫
S
Wbend(Srel[φ]) da . (9)

For Wbend we require that (i) Wbend(0) = 0, (ii) DWbend = 0 at the zero matrix, and (iii)
D2Wbend is positive definite at the zero matrix. The scaling factor δ3 reflects the fact that
bending is a second order term in the expansion of the volumetric elastic energy and the inte-
gration volume has thickness δ. A simple model for the energy density is Wbend(Srel[φ]) =
|Srel[φ]|2, where |A| denotes the Frobenius norm of the matrix A. Notice that Wbend(Srel[φ])
takes into account the full change of the shape operators, not only the change of their traces
(i.e., mean curvatures)—to the effect that changes of bending directions are accounted for
appropriately.

Different surface representations. Observe that the above energy formulations apply when-
ever a formulation of first and second fundamental forms is available, e.g., for parametric
surfaces, implicit surfaces, and triangle meshes.

5 Deformation and Physical Simulation of Thin Shells

In geometry processing, a designer may want to edit a shape by manually deforming only
parts of a given larger rest shape, e.g., the hands, legs, or arms of a humanoid figure, through
the use of handles. In this setup, the remaining parts of the shape are required to follow the
deformation of the parts prescribed by the user in a plausible way. One approach for tack-
ling this problem is through minimizing the elastic deformation energy of the deformed with
respect to the undeformed shape while respecting the boundary conditions provided by the
user. However, in practice, due to the nonlinearity of elastic energy, this approach is often too
costly for an interactive editing session when working with detailed and complex geometries.
Therefore, many deformation approaches take the route of compromise: interactive response
is established at the price of sacrificing physical accuracy. Notice, though, that in graphics, the
quality of a deformation method might be evaluated by its plausibility rather than its physical
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accuracy. We come back to this point when discussing physical simulations, where an eyeball
metric is often no longer admissible.

Isometric deformations. For various thin elastic materials, the gradient of membrane en-
ergy is usually large relative to the gradient of bending energy, since many materials tend to
resist stretching more than bending [56, 57]. Therefore, one may often assume that deforma-
tions nearly preserve the metric, i.e., are nearly isometric. Observe that if a deformation φ
induces an isometry and the undeformed state is planar in its rest state (i.e., it is a thin plate),
then the first fundamental form remains unchanged and hence Wmem[φ] = 0. Restricting
to the case of the Frobenius norm for bending energy density, i.e., Wbend(A) = |A|2, one
additionally obtains that isometric deformations of thin plates yield

Wbend[φ] =

∫
S
|Hess[φ]|2da ,

where Hess = ∇d denotes the Hessian of the undeformed surface with respect to its Rieman-
nian metric, and ∇ denotes covariant differentiation.This is due to the fact that (i) the shape
operator of the undeformed surface vanishes identically, thus (ii) the relative shape operator
is equal to the (pullback of) the shape operator of the deformed surface, and (iii) for isometric
deformations the second fundamental form of the deformed surface is related to the Hessian
via IIφ(S)(v, w)nφ = Hess[φ](v, w), where nφ is the normal of the deformed surface. Notice
that this implies that bending energy is quadratic in the displacement φ without any further
assumptions or simplifications. This observation has been used in [53] to accelerate compu-
tations.

Linearized elasticity. While isometric deformations of thin plates lead to quadratic bending
energies, this is no longer the case for thin shells that are not flat in their rest configuration. To
gain efficiency by simplifying the elastic energy described above, some authors consider the
effect of infinitesimal displacements, i.e., the setting of linearized elasticity. In this setting,
let v : S → R3 be a vector field on S with the deformed shape φ(S) given by

φ(x) = x+ εv(x)

for some small ε ∈ R+. To further simplify the exposition, we additionally restrict to energy
densities given by the Frobenius norm, i.e., Wmem(A) = |A − 1|2 and Wbend(A) = |A|2.
Then the corresponding membrane energy is given by

Wmem[φ] = δε2
∫
S
|(DSv)sym|2 da+ . . . ,

where dots denote higher order terms with respect to ε and (DSv)sym is the symmeterized
derivative, i.e., (DSv)sym = 1T3×2DSv + DSv

T13×2, where 13×2 is a 3 × 2 matrix that
contains the 2 × 2 identity matrix in its upper part and zeros in the last row. Likewise, the
linearized bending energy for infinitesimally isometric (inextensional) deformations is given
by

Wbend[φ] = δ3ε2
∫
S
|Hess[v] · n|2 da+ . . . ,

where Hess[v] denotes the component-wise Hessian of v : S → R3, and on each component
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Fig. 12 Similar to mesh deforma-
tion, the linear editing metaphor can
be used for coating transfer (e.g.,
from mannequin to bunny) [58].
(Image courtesy of O. Sorkine–
Hornung.)

the Hessian is taken with respect to the Riemannian metric
on S (see above). Notice that the inner product with the
surface normal n turns Hess[v] · n into a symmetric 2× 2
tensor field. The assumption of infinitesimally isometric
deformations is motivated by considering pure bending,
i.e., by disallowing any contribution of membrane terms
in the bending energy.

Linear elasticity has the benefit of leading to quadratic
energy functionals and thus linear Euler–Lagrange equa-
tions iff the constraints prescribed by the user (in form of
prescribed deformations of parts of the surface) are also
linear in positions. In order to be able to work with stan-
dard solvers, the above energies are by some authors fur-
ther modified to

W̃mem[v] =

∫
S
‖DSv‖2 da and W̃bend[v] =

∫
S
‖4Sv‖2 da ,

where ‖ · ‖ denotes the usual Euclidean norm. Notice that different from |(DSv)sym|, which
does not account for infinitesimal rotations, ‖DSv‖ is the full norm and therefore also in-
corporates rotations and thus contains bending contributions in the membrane energy. In-
deed, ‖DSv‖ only vanishes if v induces a translation. Likewise, taking the trace, i.e., using
4Sv = tr Hess[v], does not account for principal bending directions. From an implementa-
tion point of view, however, this formulation is simple as it leads to Euler–Lagrange equations
that involve standard operators—given by the harmonic and biharmonic equations

4Sv = 0 and 42
Sv = 0 ,

respectively, for the membrane and bending term. Due to the presence of Laplacian and bi-
Laplacian only, this formulation can be used for the variety of surface representations outlined
above. We refer the reader to the detailed survey by Botsch and Sorkine [59] for a discussion
of benefits and drawbacks of the linearized approach in computer graphics applications.

Restoring rotation invariance. A major limitation of linear elasticity is that it comes at
the price of losing rotation invariance. Several approaches in the literature have attempted
to overcome this limitation. One set of approaches is based on moving frames or what is
known as differential coordinates. For smooth surfaces, the formulation of representing a
surface by moving frames that are adapted to the geometry (i.e., orthonormal frames that
have two tangential and one normal unit vector) rather than in a fixed frame (i.e., external
Euclidean coordinate system) dates back to E. Cartan and H. Weyl. When using moving
frames for deformations, the main idea is to employ a two-step process. The methodology of
reconstructing a surface in two steps somewhat mimics the proof of the fundamental theorem
of surface theory in the smooth setting (when formulated via moving frames), where one also
first reconstructs frames (using one set of integrability conditions) and then reconstructs a
corresponding surface (using another set of integrability conditions), see [60]. In practice,
the first step reconstructs the frame field under the constraints provided by the user. The new
frame field is solved for by interpolating (or approximately interpolating) between the frames
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Fig. 13 Deformation of the dragon (left) by fixing its hind feet and moving its head upwards in a single
step. The result of PriMo [61] (right) compared to linear deformation methods (second through fifth
picture) that tend to yield counter-intuitive results. (Image courtesy of M. Botsch.)

specified by the user’s editing. A second step solves for surface positions using the frame
field from the first step and using positional constraints provided by the user. This two-step
procedure is not always unproblematic, as the constraints of the first and second step may
be incompatible. We refer to Botsch and Sorkine [59] for a discussion of pros and cons for
various methods that employ this methodology.

Another set of approaches builds on giving up linearity in order to restore rotation invari-
ance. One example of a popular, efficient, and robust method for nonlinear surface defor-
mation and shape matching is PriMo [61]. This approach is based on replacing the triangles
of a polyhedral surfaces by thin prisms. During a deformation, these prisms are required to
stay rigid, while nonlinear elastic forces are acting between neighboring prisms to account
for bending, twisting, and stretching of the surface. This requires to solve for optimal rigid
motions under the constraints prescribed by the user. Another nonlinear method for restoring
rotation invariance was suggested by Sorkine and Alexa in their work on as-rigid-as-possible
(ARAP) deformations [62]. In this approach, one assigns to each vertex an optimal (in a
least squares sense) rotation matrix that maps the edges of the undeformed to the edges of
the deformed shape. To construct the deformed shape, ARAP alternates between minimizing
a suitable energy for optimal vertex positions and optimal rotations. Unfortunately, neither
PriMo nor ARAP appear to have a continuum mechanics analogue.

Volume deformations. Another approach that is prevalent in the literature is to view sur-
faces as boundaries of 3D volumes. In this setting, deformations are handled by changing the
entire volume instead of the surface only. From the perspective of continuum mechanics, a
suitable energy for isotropic volumetric materials is to minimize the distance of the differen-
tial Dφ of a deformation φ : M ⊂ R3 → R3 to the rotation group SO(3), by minimizing the
energy

Welastic[φ] =
1

2

∫
M

min
R(x)∈SO(3)

|Dφ(x)−R(x)|2 dx

under user-specified constraints. This approach is based on the observation that, apart from
globally rigid motions, locally varying rotations will unavoidably induce deviations from
isometry. To be precise, suppose without loss of generality (by factoring out globally rigid
motions) that a volume deformation φ fixes the center of mass and induces no global rotation,
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Fig. 14 Snapshots from the simulation of a billowing flag. Despite its economy of cost, the proposed
isometric bending model in [53] achieves qualitatively the same dynamics as popular nonlinear models.

i.e.,
∫
M
φ dx =

∫
M

curl(φ) dx = 0. Then geometric rigidity [63] implies that there exists a
constant C depending on M (but not on φ) such that∫

M

|Dφ(x)− 1|2 dx ≤ C
∫
M

min
R(x)∈SO(3)

|Dφ(x)−R(x)|2 dx .

This inequality reflects the fact that if an infinitesimal piece of material is rotated with respect
to a “neighboring” infinitesimal piece, then such a rotation induces local stretching, compres-
sion, or shearing of the material. Notice the conceptual similarity of this observation to the
approaches employed by PriMo and ARAP discussed above.

In comparison to the Green–Lagrange strain tensor DφTDφ − 1, the above formulation
is attractive since it is of lower order in the state variables. Chao et al. [64] make use of
this observation for constructing an efficient algorithm for volume deformations. We have
singled out the above formulation from the bulk of approaches for volume deformations in the
literature as it is rotation invariant by design. As for the case of thin shells, rotation invariance
would be lost by working with a linearized model.

Physical simulations of thin shells. Closely related to surface deformations are physical
simulations of shells—with one important difference: While an eyeball metric might be a rea-
sonable choice for deformations of flexible surfaces for graphics applications, this is often no
longer an acceptable metric for physical simulations, where, e.g., violation of rotation invari-
ance leads to loss of angular momentum preservation and hence to clearly visible artifacts.
The early graphics literature has focused on efficiency—and, to achieve this, has sometimes
willingly been sacrificing physical accuracy. This trend has somewhat been reversed over the
past years—with computer science researchers attempting to turn insights from the computa-
tional mechanics community into fast algorithms that do not break the laws of physics.

In a physical simulation of thin shells, the state variables φ and v, describing the position
(as a map from a reference surface S to R3 ) and velocity of a moving surface in space are
subject to elastic, damping, contact, and other external forces. The elastic response of a
deformed material is governed by a conservative force, i.e., one which acts against the energy
gradient, i.e., Felastic[φ] = −∇W[φ] = −∇Wmem[φ]−∇Wbend[φ].

Damping and collisions. Most real materials dissipate energy during motion. Rayleigh
damping is among the simplest models of dissipation used by the computational mechanics
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community [65, 66]. In the Rayleigh view, the damping force, Fdamp, is proportional to
velocity, v(t) = φ̇(t):

Fdamp[v] = −Kdv , where Kd = α1M + α2Hess[W] . (10)

Here, the linear operator Kd is written as a linear combination5 of two tensors: the mass
matrix M and the Hessian of the elastic energy; the two tensors correspond to damping of low
and high temporal frequencies, respectively.

A far more challenging and involved problem for physical simulations is collisions. In-
deed, while the problem of how to detect collisions of a surface (either with other objects
or with parts of itself) has been treated by efficient algorithms in the literature (e.g., by us-
ing specifically adapted spatial data structures), the problem of how to resolve collisions in a
physically accurate manner is still an active area of research. Consider scenarios such as mul-
tiple contact regions that frequently change over time or sliding contact, e.g., when pulling
a rope tight. Challenging aspects include that colliding regions must not interpenetrate, that
collisions are to be resolved in physically correct way, and that computations for resolving
collisions should finish in finite time. For a fairly recent treatment of these aspects we refer to
the work of Harmon et al. [67].

Temporal evolution. In a classical mechanical system, the temporal evolution of position,
φ ≡ φ(t), and velocity, v ≡ φ̇, is governed by the equations of motion:(

Id 0
0 ρM

)(
φ̇(t)
v̇(t)

)
=

(
v(t)

Felastic[φ(t)] + Fdamp[v(t)] + F [φ(t), v(t))]

)
, (11)

with initial conditions φ(0) and v(0). Here F [φ, v] denotes other forces, such as contact
forces or gravity, and the physical mass matrix, ρM, is given by the product of mass surface
density and the geometric mass matrix. In order to accelerate force computations, it is often
desirable to have explicit representations of energy gradients and energy Hessians instead of
numerically deriving these quantities on the fly by automatic differentiation.

Time discretization of (11) is a well-studied problem (see [68] and references therein);
methods may be classified as explicit, implicit, or mixed implicit-explicit.6 Geometric (or
variational) integrators [69] have been advocated due to their structure preservation, e.g.,
guaranteed preservation of momenta and near preservation of energy even for large simulation
times.

6 Matching of Thin Shells

The feature aware matching of two given surfaces is one of the fundamental tasks in geome-
try processing. The matching problem consists of finding a “good” correspondence between
two given input shapes, such as two faces, two poses of an animated character, or two scans

5 In this ad-hoc model, the constants α1 and α2 are endowed with the requisite units so that the final product has
units of force.

6 In mixed implicit-explicit (IMEX) time-integration, some forces are treated using the explicit method, and other
forces are treated using the implicit method.
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of body organs. The meaning of “good” is dependent on the specific application and is of-
ten measured with the help of some energy functional. One challenge in shape matching is
that in principle all possible correspondences between the two given shapes would have to
be considered—a space that is often intractably large for computations. Another challenge
for shape matching based on energy minimization is the nonconvexity of the attendant energy
landscape—a problem that can be alleviated using multiscale or multigrid optimizers. Finally,
a big challenge is partial shape matching in scenarios where shapes are only partially avail-
able. There exists a vast amount of literature on matching triangulated surfaces. For example,
starting from the notion of Gromov–Hausdorff distances, Bronstein et al. [70] have developed
an efficient algorithm for the matching of triangular surfaces. Their method also applies to the
case of partial correspondence. A topologically robust variant of this approach based on dif-
fusion distances was proposed in [71]. The observation that robustness to noise and changes
of topology can be significantly increased by a multiscale approach has also been utilized by
Sun, Ovsjanikov, and Guibas in [72], where shape matching is based on the heat kernel.

Here we investigate the shape matching problem from the viewpoint of thin shell deforma-
tions and under two different perspectives: the matching of parametric surfaces using defor-
mations between the parameter domains and the matching of implicit surfaces.

Matching parametric surfaces. Physically, one might consider surface matching as the

SA SB ← SA SB
Fig. 15 In surface matching, a partial correspon-
dence is often desired. The correspondence is de-
fined where their parameter domains intersect un-
der the matching deformation (bottom). In this do-
main, quantities such as the mean curvature texture
map can be mapped between surfaces (center). Un-
matched regions are depicted in black.

pressing of a given surface SA into the
mould of another surface SB . Given lo-
cal parameterizations xA : ΩA → SA and
xB : ΩB → SB of the two surfaces, the
matching problem can be phrased in terms
of a functional that yields an optimal map-
ping φΩ : ΩA → ΩB .7 The attendant
matching functional can be composed as a
sum of terms that penalize membrane and
bending distortions induced by φΩ. Addi-
tionally, besides the tangential distortion en-
ergy Wmem, which can be regarded as a
regularization energy ensuring smoothness
of the matching deformation, and the bend-
ing energyWbend, which attempts to match
regions of equal curviness, such as corre-
sponding creases, one might want to align
preselected feature regions, such as the eyes
on facial surfaces via a third energy term
Wfeature. Defining φ = xB ◦ φΩ ◦ x−1

A , one
obtains the tangential Cauchy–Green tensor
Gtan[φ] and the relative shape operator Srel[φ] as described above, from which one assembles
Wmem andWbend, respectively. In particular, for the membrane energy density one can use
Wmem(A) = Ŵ (a, b) = αla+αa

(
b+ (1 + αl

αa
) b−1

)
− 2αa − 3αl, where a = a(A) = trA

accounts for length distortion and b = b(A) = detA accounts for area expansion with b and

7 For the case of partial matching, one allows for φΩ(ΩA) 6= ΩB .
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area compression with b−1. The weights αl, αa > 0 are chosen according to the relative im-
portance of length and area distortion. This simple class of polyconvex energy functionals [73]
was rigorously derived in [74] from a set of natural axioms for measuring the distortion of a
single parameterization. If one is only interested in the comparison of the mean curvatures of
the two surfaces, one can use the bending energy density Wbend(A) = (trA)2. Finally, if we
denote by FA ⊂ ΩA and FB ⊂ ΩB feature sets in the parameter domains of the two surfaces,
then

Wfeature[φΩ] =

∫
ΩA

(
(χFB ◦ φΩ)(1− χFA) + (1− χFB ◦ φΩ)χFA

)√
det gA dξ

measures the symmetric difference on the surface A of the feature set on surface A and the
pullback of the feature set on the surface B. Here χΩ denotes the characteristic function of
a set Ω. The resulting combined energy W[φΩ] is then given by an appropriately weighted
sum of Wmem[φΩ], Wbend[φΩ], and Wfeature[φΩ]. Fig. 15 shows an application of surface
matching.

Matching implicit surfaces. Given two surfaces SA and SB , one can use an implicit ap-
proach by representing them by their respective signed distance functions dA and dB . In this
case one obtains for the extended shape operator (see above) Sext

X = DnXPX = D2dX for
X ∈ {A,B}, where PX = 1 − ∇dX ⊗ ∇dX is the projection to a level set of the respec-
tive distance function. One choice of a robust and efficient algorithm for the conversion of
a general implicit surface representation into a signed distance function is the fast marching
method [75]. Since we are interested in matching the two surfaces SA and SB , a narrow band
approach enables “blending out” distant implicit surfaces [dA = c] and [dB = c] for |c| ≥ ε.
Indeed, one defines a smooth blending function ησ : R → R+

0 with ησ(c) = 0 for |c| ≥ σ
and ησ(c) = 1 for |c| ≤ σ

2 . Then, taking into account the coarea formula (and the fact that
‖∇dA‖ = 1) for a deformation φ : R3 → R3, one obtains the tangential distortion energy on
the narrow band [−σ ≤ dA ≤ σ] as given by

Wmem[φ] =

∫
R3

(ησ ◦ dA)Wmem(Gtan[φ] +∇dA ⊗∇dA) dx ,

where Gtan[φ] is the above defined tangential Cauchy–Green strain tensor, trivially extended
to a 3× 3 tensor by requiring that Gtan[φ]nA = 0. As a first approach for the bending energy
one gets (see [76])

Wbend[φ] =

∫
R3

(ησ ◦ dA)|PADφT ((D2dB) ◦ φ)DφPA −D2dA|2 dx .

Unfortunately, the resulting energy is not lower semicontinuous. To remedy this deficiency,
we modify the bending term by first modifying the definition of the tangential Jacobian by
setting DB

Aφ = (PB ◦ φ)DφPA and then defining

Wbend[φ] =

∫
R3

(ησ ◦ dA)W
(

((Sext
B + β1)

1
2 ◦ φ)DB

Aφ (Sext
A + β1)−

1
2 + Λ

)
dx ,

where Λ = ∇dB ⊗∇dA. This modification indeed yields a lower semicontinuous functional
for large enough β, see [77]. Here, the integrand W is chosen similarly to the integrand
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Fig. 16 Matching of implicit surfaces based on the simplified thin shell model [76] for two octahedrons
(left) (the second image shows a matching without bending energy) and two different faces (right).
Thereby the texture is deformed together with the template surface and shows the proper matching of
geometric features.

of membrane energy. Besides the membrane and bending energies on the narrow band, one
requires a penalty functional,

Wpenalty[φ] =
1

ε

∫
R3

(ησ ◦ dA)(dA − dB ◦ φ)2 dx ,

in order to ensure that the neighboring level sets around SA in the narrow band are sufficiently
well matched to the neighboring level sets of surface SB . Finally, to render the method compu-
tationally feasible, one has to ensure in addition that the deformation φ is regular and injective
also outside the narrow band in the region of computation Ω around SA. To this end, we
incorporate a regularization energy,

Wreg[φ] =

∫
Ω

(1− ησ ◦ dA)Wreg(C[φ]) dx ,

where C[φ] = Dφ(x)T Dφ(x) is the three-dimensional Cauchy–Green strain tensor and
Wreg(C) = µ

4 tr(C)2 + (λ − 2µ) det(C)
1
2 − λ−µ

2 log det(C) for Lamé-Navier coefficients
λ and µ [78]. A weighted sum of the energy terms Wmem, Wbend, Wpenalty , and Wreg,
yields the total elastic energy. Similar to the parametric case, a feature matching energy can
additionally be taken into account.

7 Spectral and Modal Methods

Building on a general paradigm of global analysis, it can be advantageous to switch per-
spective and describe surfaces through function spaces (such as Sobolev spaces) and differ-
ential operators (such as the Laplacian) acting between them. This functional perspective
has recently been advocated for various geometry processing applications by Ovsjanikov,
Ben-Chen, and others [79–81]. For (formally) self-adjoint differential operators (such as the
Laplace–Beltrami operator), one can consider the spectrum and the eigenfunctions as descrip-
tors of the surface, which allows for applying classical signal processing approaches to irregu-
lar triangle meshes. Indeed, the eigenfunctions of the Laplacian constitute a basis that provides
the analogue of the Fourier basis in the planar case. Geometry processing applications that
utilize the spectral viewpoint include mesh compression [82,83], mesh parameterization [84],
mesh fingerprinting [85], mesh segmentation, mesh registration [86], and so forth.
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Fig. 17 The first 10 eigenfunctions are color coded on the limit surface of Loop’s subdivision applied
to an initial control mesh (left). (Image courtesy of R. Perl.)

Fig. 18 Results of an interactive animation of an elephant model using modal analysis to build a reduced
basis of forces [88]. (Image courtesy of K. Hildebrandt.)

Another operator that is relevant from the perspective of shell deformations is the Hes-
sian of the elastic energy. If the Hessian of elastic energy is considered at the (undeformed)
rest state of a (possibly naturally curved) shell, then the eigenvalues λi are eigenfrequen-
cies and the corresponding eigenfunctions ui : S → R3 are the associated vibration modes.
Thereby, a vibration mode ui is a displacement function in the normal direction of a surface
that describes an (infinitesimal) oscillation of the elastic shell with frequency λi, where low
eigenvalues correspond to a low degree of stiffness and thus to a physically preferred mode of
shell variability.

The spectrum and eigenvalues of this energy Hessian provide the so-called modal basis,
which is in general different from the spectral basis, and that is adapted to elastic properties
of a given surface. Hildebrandt et al. [87, 88] showed how to use this basis for the intuitive
modeling of surfaces and for accelerating physical simulations. Indeed, for accelerating phys-
ical simulations, a starting point is to observe that if one considers Rayleigh damping, then
the equations of motion decouple (as ordinary differential equations) in the modal basis.

As a significantly simplified, linear model one considers solely normal variations un of the
surface S and the quadratic energy W[u] =

∫
S |4Su|

2 da for scalar functions u : S → R.
Then, one is lead to the eigenvalue problem42

Su = λu for the geometric bi-Laplacian42
S . A

set of eigenfunctions for the geometric bi-Laplacian is shown in Figure 17. Here, a projected
inverse vector iteration has been applied to the discrete weak form (6) in the Loop subdivision
finite element approach.

8 From shapes to the space of shapes

Up to this point, we have discussed computational tools to process single geometries. From a
more global perspective one might want to study surfaces as points in a space of shapes. Over
the last decade, concepts from Riemannian manifolds have been applied to design and inves-
tigate nonlinear and frequently infinite-dimensional shape spaces, with applications in shape
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Fig. 19 Two intermediate surface (green) from a geodesic between two poses (blue) of an elephant
model and a extrapolation via the exponential map (magenta) using the approach by Kilian et al. [90].
(Image courtesy of M. Kilian.)

morphing and modeling [89, 90], in computational anatomy [91, 92], as well as shape statis-
tics [93, 94]. Studying shape space from the point of view of Riemannian geometry enables
transfer of important concepts from classical geometry to these (usually) infinite-dimensional
spaces. Examples with a fully developed geometric theory include spaces of planar curves
with curvature based metrics [95], elasticity based metrics [96, 97], or Sobolev-type met-
rics [98]. In a geometrically motivated approach, Kilian et al. consider geodesics between
consistently triangulated surfaces (see [90] and Fig. 19), where the underlying Riemannian
metric measures the stretching of triangle edges. While this metric is invariant to rigid body
motions, the lack of a bending term leaves a non-trivial kernel of the metric tensor, including
all isometric deformations of the triangular mesh. To avoid the resulting unphysical wrin-
kling effects, a supplementary (nonphysical) regularization was incorporated by Killian and
co-workers. Instead, one may use the regularizing effect of bending energy—and stay entirely
in the realm of a physically sound theory—as demonstrated in [99, 100].

Time-continuous setting. The central observation, both for smooth surfaces and triangle
meshes, is that the Hessian of elastic energy8 when evaluated at the undeformed surface
is positive semidefinite, and its kernel consists of infinitesimal rigid transformations only,
see [100]. Thus, modulo rigid transformations of surfaces, this Hessian provides a notion of a
Riemannian metric on the space of shapes, which we denote by gS(·, ·) at a point S in shape
space. Notice that a tangent vector v at a point S in shape space corresponds to a vector field
v : S → R3. Geodesics that are associated with this Riemannian metric have a physical inter-
pretation. Indeed, viewing surfaces as thin viscous materials9, a geodesic is the deformation
path between two points in the space of shells that has the least energy dissipation. To see this,
consider a family (φt)0≤t≤1 of diffeomorphisms of R3 with φ0 = 1. This family generates a
deformation path φt(S), and if shells were purely viscous, then along this path energy would
be dissipated. According to Rayleigh’s analogy that derives a viscous formulation from an
elastic one by replacing elastic strain by strain rates [101], the total energy dissipation is

E [(φt)0≤t≤1] =

∫ 1

0

HessWt[1](vt, vt) dt =

∫ 1

0

gSt(vt, vt) dt . (12)

Here vt = φ̇t ◦ φ−1
t is the Eulerian velocity field associated with the deformation, and Wt

is the elastic energy associated with the shell St = φt(S), where for each fixed t, the shell

8 As before, elastic energy is a sum of membrane and bending contributions.
9 Although the theory initially requires finite thickness, we restrict to the midsurface to simplify the expositions.
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Fig. 20 Discrete geodesic between two hand poses, based on the model of discrete viscous shells. The
colors indicate dissipation due to surface stretching (top) and bending (bottom).

St is the undeformed rest state of Wt. In Riemannian geometry, the right hand side of (12)
is known as path energy, and its minimizers are constant speed geodesics, thus establishing
a rigorous notion of distance between surfaces. The resulting Riemannian structure on the
space of shells not only gives rise to the notion of shortest paths. Additionally, it allows for
defining (i) the logarithm (mapping shortest paths between two shapes into an initial velocity
vector which “shoots” to the target shape), (ii) the exponential (mapping an initial shooting
direction into a particular shape via a shortest path) and (iii) the notion of parallel transport.
We discuss the corresponding constructions below.

Time-discrete setting. For computational feasibility, one requires a time-discrete analogue
of the time-continuous setting outlined above. Here, we offer a brief outline of such a dis-
crete theory. For details we refer to [99, 100, 102, 103]. Consider the time-discrete family
(Sk)k=0,...,K of shells given by Sk = φkτ (S), where τ = 1

K denotes the discrete time step.
A straightforward Taylor expansion shows that one can approximate, up to second order in τ ,
the path energy (12) by

E [S0, . . . ,SK ] = K

K∑
k=1

W[Sk−1,Sk] , (13)

where W[Sk−1,Sk] denotes the elastic energy required for deforming Sk−1 into Sk. A dis-
crete geodesic path is now defined as a minimizer of the discrete path energy E [S0, . . . ,SK ]
with given boundary conditions S0 = SA and SK = SB . Concerning the spatial discretization
for triangulated meshes, one might use the notions of discrete first and second fundamental
forms discussed in Section 2 for defining elastic energies. Figure 20 shows a discrete geodesic
together with the different components of the underlying local dissipation rate.

In what follows, we denote the vector of vertex positions uniquely describing a discrete
surface Sh by X̄ = X̄[Sh]. Thus, we describe discrete surfaces solely in terms of these
vectors and adapt the notion of the spatially discrete deformation energy and the fully dis-
crete path energy accordingly, i.e., usingWh[X̄k−1, X̄k] and Eh[X̄0, . . . , X̄K ], respectively.
If (X = X̄0, . . . , X̄K = Y ) is a discrete geodesic, then the initial displacement X̄1 − X̄0
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X̄A

X̄B

X̄C

X̄A

X̄B

X̄C

X̄×

X̄A

X̄B

X̄C

X̄×

X̄A

X̄B

X̄C

X̄×

X̄D

X̄A = X̄0
X̄1

X̄C X̄D

X̄×

X̄K

X̄ ′K

V̄ V̄ ′

Fig. 22 Top: Stepwise construction of a (discrete) geodesic parallelogram (in the discrete case K = 4
such that each discrete geodesic consists of five shapes indicated by the black dots). Bottom: Iterative
construction for the time-discrete parallel transport of V̄ along (X̄0, . . . , X̄K) to V̄ ′.

scaled with 1
τ can be considered as a time-discrete counterpart of the time-continuous geo-

metric logarithm logX̄ Ȳ , which gives rise to the notation 1
KLogX̄ Ȳ = X̄1 − X̄0. The time-

continuous geometric exponential map expX̄ v is defined as the endpoint of a geodesic with

Fig. 21 Two positions of a fin-
ger as initial shapes (grey) and
several steps of the discrete expo-
nential map.

initial velocity v in the tangent space at the position X̄ on the
shape manifold. Thus, for a given displacement V̄ one de-
fines a time-discrete exponential map ExpKX̄ V̄ (with K time
steps) as that position Ȳ , such that the initial displacement
of the resulting discrete geodesic [X̄ = X̄0, . . . , X̄K = Ȳ ]
between X̄ and Ȳ equals V̄ , i.e., V̄ = X̄1 − X̄0. Fig-
ure 21 shows results of the discrete exponential map. Fi-
nally, we outline how to proceed with respect to a dis-
crete parallel transport. To define a time-discrete parallel
transport PX̄0,...,X̄K V̄ of a displacement V̄ along a discrete
curve (X̄0, . . . , X̄K) one can use a time-discrete counterpart
of a Riemannian parallelogram construction, also known as
Schild’s ladder in gravitational physics [104, 105]: Given three shells, represented as X̄A,
X̄B , and X̄C , respectively, one can construct a fourth shell, represented by X̄D, such that
the geodesic paths between the four shells form a geodesic parallelogram, i.e., the geodesics
X̄C ↔ X̄B and X̄A ↔ X̄D share the same midpoint X̄× (see Fig. 22). To compute X̄D

we proceed as follows: (i) compute the geodesic from X̄C to X̄B via interpolation; (ii) take
its midpoint X̄×, (iii) compute the geodesic from X̄A to X̄×, (iv) compute X̄D through ex-
trapolation from X̄× with initial direction V̄ ×, where V̄ × is the final velocity of the geodesic
in step (iii) at its endpoint X̄×. A sequence of K such parallelograms then transports the
initial velocity V̄ of X̄A ↔ X̄C along the path from X̄A = X̄0 to X̄K to the velocity V̄ ′ of
X̄K ↔ X̄ ′K (see also Fig. 22).
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9 Conclusion

In this paper we have highlighted some of the developments in geometry processing with
a strong focus on methods related to the mechanics of thin elastic surfaces and from a bi-
ased personal perspective. We attempted to cover various geometric representations including
parametric and triangulated surfaces, level sets, and subdivision surfaces. Furthermore, we
sketched the increasing interaction of mathematics, computer graphics, and mechanics. This
interplay is characterized by fundamental and unresolved challenges. Indeed, the convergence
of discrete minimizers of geometric and elastic functionals to their continuous counterparts is
widely open. Likewise it is unknown for the elastic functionals describing surface deforma-
tions if there exist discrete (local) minimizers in the vicinity of a continuous (local) minimizer.
It might also be rewarding to study the curvature of shape space based in the above introduced
Riemannian metric. Furthermore, concerning the dynamics of shapes, the aim is to advance
consistent physical animation towards fully fletched virtual reality. Finally, while shapes are
quite well understood by now, incorporating the structure of the space of shapes poses many
challenging open problems.
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[92] M. I. Miller, A. Trouvé, and L. Younes, The metric spaces, Euler equations, and normal geodesic

image motions of computational anatomy, in: Proceedings of the 2003 International Conference
on Image Processing, (2003), pp. 635–638.

[93] P. Fletcher, C. Lu, S. Pizer, and S. Joshi, Medical Imaging, IEEE Transactions on 23(8), 995–
1005 (2004).

[94] M. Fuchs and O. Scherzer, International Journal of Computer Vision 79(2), 119–135 (2008).
[95] P. W. Michor and D. Mumford, J. Eur. Math. Soc. 8, 1–48 (2006).
[96] A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn, Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on 33(7), 1415–1428 (2011).
[97] G. Sundaramoorthi, A. Mennucci, S. Soatto, and A. Yezzi, SIAM Journal on Imaging Sciences

4(1), 109–145 (2011).
[98] G. Sundaramoorthi, A. Yezzi, and A. Mennucci, International Journal of Computer Vision.

73(3), 345–366 (2007).
[99] B. Heeren, M. Rumpf, M. Wardetzky, and B. Wirth, Computer Graphics Forum 31(5), 1755–

1764 (2012).
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