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Abstract
We introduce the heat method for solving the single- or 
multiple-source shortest path problem on both flat and curved 
domains. A key insight is that distance computation can be 
split into two stages: first find the direction along which dis-
tance is increasing, then compute the distance itself. The 
heat method is robust, efficient, and simple to implement 
since it is based on solving a pair of standard sparse linear 
systems. These systems can be factored once and subse-
quently solved in near-linear time, substantially reducing 
amortized cost. Real-world performance is an order of 
magnitude faster than state-of-the-art methods, while 
maintaining a comparable level of accuracy. The method 
can be applied in any dimension, and on any domain that 
admits a gradient and inner product—including regular 
grids, triangle meshes, and point clouds. Numerical evi-
dence indicates that the method converges to the exact dis-
tance in the limit of refinement; we also explore smoothed 
approximations of distance suitable for applications where 
greater regularity is desired.

1. INTRODUCTION
The multiple-source shortest path problem seeks the distance 
from each point of a domain to the closest point within a 
given subset; different versions of this problem are funda-
mental to a wide array of problems across computer science 
and computational mathematics. Solutions date back at 
least to Dantzig’s work on linear programs35; typically the 
problem is formulated in terms of a weighted graph, as in 
Dijkstra’s algorithm. Often, however, one wishes to cap-
ture the distance on a continuous domain; a key example 
is illustrated in Figure 1 (left) where the graph distance will 
overestimate the straight-line Euclidean distance, no matter 
how fine the grid becomes. In 2D, an important development 
was the formulation of “exact” algorithms, where paths 
can cut through the faces of a triangulation8, 27; a great deal 
of subsequent work has focused on making these O(n2) 
algorithms practical for large datasets.40,46 However, for 
problems in data analysis and scientific computing it is not 
clear that the cost and complexity of exact algorithms are 
always well-justified, since the triangulation itself is only an 
approximation of the true domain (see Figure 4).

A very different approach is to formulate the problem 
in terms of partial differential equations (PDEs), where 
domain approximation error can be understood via, for 
example, traditional finite element analysis. However, the 
particular choice of continuous formulation has a sub-
stantial impact on computation. The heat method was 
inspired by S.R.S. Varadhan’s classic result in differential 
geometry42 relating heat diffusion and geodesic distance, which 
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measures the length along shortest and straightest curves 
through the domain rather than straight lines through 
space. Our key observation is that one can decompose dis-
tance computation into two stages: first determine the 
direction along which distance increases, then recover 
the distance itself. Moreover, since each stage amounts 
to a standard problem in numerical linear algebra, one 
can leverage existing algorithms and software to improve 
the efficiency and robustness of distance computation. 
Although this approach can in principle be used in the 
context of graph distance, its real utility lies in approxi-
mating the distance on continuous, curved domains. This 
approach has proven effective for a diverse range of appli-
cations in computational neuroscience, geometric model-
ing, medical imaging, computational design, and machine 
learning (Section 2), and has recently inspired more accu-
rate variations of our original method.3

1.1. Formulation
Imagine touching a scorching hot needle to a single point 
on a surface. Over time heat spreads out over the rest of the 
domain and can be described by a function kt, x(y) called the 
heat kernel, which measures the heat transferred from a 
source x to a destination y after time t. A well-known rela-
tionship between heat and distance is Varadhan’s formula,42 

Figure 1. In contrast to algorithms that compute shortest paths along 
a graph (left), the heat method computes the distance to points on a 
continuous, curved domain (right). A key advantage of this method 
is that it is based on sparse linear equations that can be efficiently 
prefactored, leading to dramatically reduced amortized cost.
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which says that the distance φ between any pair of points x, y 
on a curved domain can be recovered via a simple pointwise 
transformation of the heat kernel:

 (1)

The intuition behind this behavior stems from the fact that 
heat diffusion can be modeled as a large collection of hot 
particles taking random walks starting at x: any particle that 
reaches a distant point y after a small time t has had little 
time to deviate from the shortest possible path. Previously, 
however, this relationship had not been exploited by numer-
ical algorithms that compute distance.

Why had Varadhan’s formula been overlooked in this con-
text? The main reason, perhaps, is that it requires a precise 
numerical reconstruction of the heat kernel, which is diffi-
cult to obtain—applying the formula to a mere approxima-
tion of kt,x does not yield the correct result, as illustrated in  
Figures 2 and 8. The heat method circumvents this issue by 
working with a broader class of inputs, namely any function 
whose gradient is parallel to the gradient of the true distance 
function. We can then separate computation into two stages: 
first find the gradient, then recover the distance itself.

Relative to existing algorithms, the heat method offers 
two major advantages. First, it can be applied to virtually any 

type of geometric discretization, including regular grids, 
polygonal meshes, and point clouds. Second, it involves 
only sparse linear systems, which can be prefactored once 
and rapidly resolved many times—this feature substantially 
reduces the amortized cost for applications that require 
repeated distance queries on a fixed geometric domain. 
Moreover, because the heat method is built on standard lin-
ear PDEs that are widespread in scientific computing, it can 
immediately take advantage of new developments in numer-
ical linear algebra and parallelization.

2. RELATED WORK
The prevailing approach to distance computation is to solve 
the eikonal equation

 (2)

subject to boundary conditions φ|γ = 0 over some subset γ 
of the domain (like a point or a curve). Intuitively, this equa-
tion says something very simple: as we move away from the 
source, the distance function φ must change at a rate of “one 
meter per meter.” Computationally, however, this formula-
tion is nonlinear and hyperbolic, making it difficult to solve 
directly. Typically one applies an iterative relaxation scheme 
such as Gauss-Seidel—special update orders are known as 
fast marching and fast sweeping, which are some of the most 
popular algorithms for distance computation on regular 
grids37 and triangulated surfaces.19 These algorithms can also 
be used on implicit surfaces,25 point clouds,26 and polygon 
soup,7 but only indirectly: distance is computed on a simplicial 
mesh or regular grid that approximates the original domain. 
Implementation of fast marching on simplicial grids is chal-
lenging due to the need for nonobtuse triangulations (which 
are notoriously difficult to obtain) or else an iterative unfold-
ing procedure that preserves monotonicity of the solution; 
moreover these issues are not well-studied in dimensions 
greater than two. Fast marching and fast sweeping have 
asymptotic complexity of O(n log n) and O(n), respectively, 

γ

Figure 3. The heat method computes the shortest distance to a 
subset γ of a given domain. Gray curves indicate isolines of the 
distance function.
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Figure 4. Convergence of distance approximations on the unit sphere 
with respect to mean edge length; as a baseline for comparison, 
we use the analytical solution φ (x, y) = cos−1(x • y). Notice that even 
with a nice tessellation, the exact distance along the polyhedron 
converges only quadratically to the true distance along the sphere 
it approximates. (Linear and quadratic convergence are plotted as 
dashed lines for reference.)
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Figure 2. Given an exact reconstruction of the heat kernel (top 
left) Varadhan’s formula can be used to recover geodesic distance 
(bottom left) but fails in the presence of approximation or numerical 
error (middle, right), as shown here for a point source in 1D. The 
robustness of the heat method stems from the fact that it depends 
only on the direction of the gradient.
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but sweeping is often slower due to the large number of 
sweeps required to obtain accurate results.16

One drawback of these methods is that they do not reuse 
information: the distance to different source sets γ must be 
computed entirely from scratch each time. Also note that 
both sweeping and marching present challenges for paral-
lelization: priority queues are inherently serial, and irregular 
meshes lack a natural sweeping order.

In a different development, Mitchell et al.27 give an 
O(n2 log n) algorithm for computing the exact polyhedral 
distance from a single source to all other vertices of a tri-
angulated surface. Surazhsky et al.40 demonstrate that this 
algorithm tends to run in sub-quadratic time in practice, 
and present an approximate O(n log n) version of the algo-
rithm with guaranteed error bounds; Bommes and Kobbelt4 
extend the algorithm to polygonal sources. Similar to fast 
marching, these algorithms propagate distance informa-
tion in wavefront order using a priority queue, again making 
them difficult to parallelize. More importantly, the amor-
tized cost of these algorithms (over many different source 
subsets γ) is substantially greater than for the heat method 
since they do not reuse information from one subset to the 
next. Finally, although40 greatly simplifies the original for-
mulation, these algorithms remain challenging to imple-
ment and do not immediately generalize to domains other 
than triangle meshes.

Closest to our approach is the recent method of Rangarajan 
and Gurumoorthy,32 who do not appear to be aware of 
Varadahn’s formula—they instead derive an analogous rela-
tionship between the distance function and solutions ψ to 
the time-independent Schrödinger equation; this derivation 
applies only in flat Euclidean space rather than general curved 
domains. Moreover, they compute solutions using the fast 
Fourier transform, which limits computation to regular grids.

A slight modification of the heat method allows us to com-
pute a smoothed distance function, useful in contexts where 
sharp discontinuities can cause subsequent numerical dif-
ficulties. Previous smooth distance approximations provide 
this regularity at the cost of poor approximation of the true 
geometric length10, 14, 21, 33; see Section 3.3 for a comparison.

Recently, the heat method has facilitated a variety of tasks 
in computational science and data analysis. For example, 
Huth et al.15 use fast distance queries to optimize a proba-
bilistic model of cortical organization; van Pelt et al.41 use 
the heat method to assist cerebral aneurysm assessment; 
Zou et al.47 use the heat method for efficient tool path plan-
ning; Solomon et al.38 leverage our approach to efficiently 
solve optimal transport problems on geometric domains; 
Lin et al.20 apply this approach to vector-valued data in the 
context of manifold learning. Figure 5 shows a real-world 
design application of the heat method based on differen-
tial growth. Various improvements have also been made 
to the original algorithm; for instance, de Goes et al.13 and 
Yang and Cohen45 describe two different ways to extend the 
method to accurate computation of anisotropic distance; it 
has also been adapted to voxelizations6, C1 finite elements,29 
and subdivision surfaces.12 Finally, Belyaev and Fayolle3 
provide a variational interpretation of our method, observ-
ing that more accurate results can be obtained by either 

iterating the heat method, or by applying more sophisti-
cated descent strategies.

3. THE HEAT METHOD
A useful feature of the heat method is that the basic 
algorithm can be described in the purely continuous setting 
(i.e., in terms of curved surfaces, or more generally, smooth 
manifolds) rather than in terms of discrete data structures and 
algorithms. In other words, at this point one should not imag-
ine that we have chosen a particular data structure (triangle 
meshes, grids, point clouds, etc.) or even dimension (2D, 3D, 
etc.). Instead, we focus on a general principle that can be 
applied on many different domains in different dimensions. 
We will later explore several particular choices of spatial and 
temporal discretization (Sections 3.1 and 3.2); further alter-
natives have been explored in recent literature.13, 29, 45

In general, the heat method can be applied in any setting 
where one has a gradient operator Ñ, divergence operator Ñ, and 
Laplace operator D = Ñ × Ñ—standard derivatives from vector cal-
culus, possibly generalized to curved domains. Expressed in terms 
of these operators, the heat method consists of three basic steps:

Algorithm 1 The Heat Method

    I. Integrate the heat flow u̇ = Du for some fixed time t.
  II. Evaluate the vector field X = −Ñut/|Ñut|.
III. Solve the Poisson equation Dφ = Ñ × X.

The function φ approximates the distance to a given source 
set, approaching the true distance as t goes to zero (Equation 1). 
For instance, to recover the distance to a single point x we 
use initial conditions u0 = δ(x), that is, a Dirac delta encod-
ing an “infinite spike” of heat. More generally we can obtain 
the distance to any subset γ by letting u0 be a generalized 
Dirac distribution42—essentially an indicator function over 
γ; see Figures 3 and 7. Note that since the solution to (III) is 
determined only up to an additive constant, final values are 
shifted such that the smallest distance is zero.

The heat method can be motivated as follows. Consider 
an approximation ut of heat flow for a fixed time t. Unless 
ut exhibits precisely the right rate of decay, Varadhan’s 

Figure 5. The heat method has been applied to a diverse range of tasks 
that demand repeated geodesic distance queries. Here, geodesic 
distance drives a differential growth model (left) that is used for 
computational design (right). Images courtesy Nervous System/Jesse 
Louis-Rosenberg.
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(id – t ∆)υt = 0 on M\γ, 
(4)υt = 1 on γ⋅

which for a point source yields a solution υt equal to ut up to 
a multiplicative constant. As established by Varadhan in his 
proof of Equation (1), υt also has a close relationship with 
distance, namely

 (5)

This relationship ensures the validity of steps II and III since 
the transformation applied to υt preserves the direction of 
the gradient.

3.2. Spatial discretization
Here we detail several possible implementations of the heat 
method on triangle meshes, polygon meshes, and point clouds. 
Note that the heat method can also be used on flat Euclidean 
domains of any dimension by simply applying standard finite 
differences on a regular grid; Belyaev and Fayolle3 outline 
implementation on tetrahedral (3D) meshes.

Triangle meshes. Let u ∈ R|V| specify a piecewise linear 
function on a triangulated surface with vertices V, edges E, 
and faces F. A standard discretization of the Laplacian at a ver-
tex i is given by

where Ai is one third the area of all 
triangles incident on vertex i, the 
sum is taken over all neighbor-
ing vertices j, and αβij, βij are the 
angles opposing the corresponding edge.23 We can 
express this operation via a matrix L = M−1LC, where  
M ∈ R |V|×|V| is a diagonal matrix containing the vertex 
areas and LC ∈ R |V|×|V| is the cotan operator representing the 

transformation  will yield a poor approxima-
tion of the true geodesic distance φ because it is highly sen-
sitive to errors in magnitude (see Figures 2 and 8). The heat 
method asks for something different: it requires only that 
the gradient ∇ut point in the right direction, that is, paral-
lel to ∇φ. Magnitude can safely be ignored since we know 
(from the eikonal equation) that the gradient of the true dis-
tance function has unit length. We therefore compute the 
normalized gradient field X = −∇ut/|∇ut| and find the closest 
scalar potential φ by minimizing ∫M|∇φ − X|2, or equivalently, 
by solving the corresponding Euler-Lagrange equations 
∆φ = ∇ ⋅ X.36 The overall procedure is depicted in Figure 6.

This procedure is used as the starting point for a family 
of discrete algorithms, as outlined in Sections 3.1–3.3. Note 
that some details have been omitted from this manuscript, 
and can be found in Crane et al.11

3.1. Time discretization
To translate our continuous procedure (Algorithm 1) into a 
discrete algorithm, we must replace derivatives in space and 
time with suitable approximations. The heat equation from 
step I of Algorithm 1 can be discretized in time using a single 
backward Euler step for some fixed time t—in practice, this 
means we simply solve the linear equation

(id – t∆)ut = u0, (3)

over the entire domain M, where id denotes the identity 
operator. Note that at this point we still have not discretized 
space; spatial discretization is discussed in Section 3.2. We 
can get a better understanding of solutions to Equation (3) 
by considering the elliptic boundary value problem

uI II IIIu X φ

Figure 6. The three steps of the heat method. (I) Heat u is allowed to 
diffuse for a brief period of time (left). (II) The temperature gradient 
Du (center left) is normalized and negated to get a unit vector field 
X (center right) pointing along geodesics. (III) A function γ whose 
gradient follows X recovers the final distance (right).

Figure 8. Left: Varadhan’s formula. Right: the heat method. Even for 
very small values of t, simply applying Varadhan’s formula does not 
provide an accurate approximation of geodesic distance (top left); for 
large values of t spacing becomes even more uneven (bottom left). 
Normalizing the gradient results in a more accurate solution, as 
indicated by evenly spaced isolines (top right), and is also valuable 
when constructing a smoothed distance function (bottom right).

Figure 7. Distance to the boundary on a region in the plane (left) or a 
surface in space (right) is achieved by simply placing heat along the 
boundary curve.

αij βij
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remaining sum. Heat flow can then be computed by solving 
the symmetric positive-definite system

(M –tLC)u = δγ,
where δγ is a Kronecker delta (or indicator func-
tion) over γ. The gradient in a given triangle can 
be expressed succinctly as

where Af is the area of the triangle, N is its 
 outward unit normal, ei is the ith edge vector 
(oriented counter-clockwise), and ui is the value of u at the 
opposing vertex. The integrated divergence associated with 
vertex i can be written as

where the sum is taken over incident triangles j each with a 
vector Xj, e1, and e2 are the two edge vectors of triangle j con-
taining i, and θ1, θ2 are the opposing angles. If we let b ∈ R|V| 
be the vector of (integrated) divergences of the normalized 
vector field X, then the final distance function is computed 
by solving the symmetric Poisson problem

As noted in Section 3.1, the solution to step I is a function 
that decays exponentially with distance. Fortunately, nor-
malization of small values is not a problem because floating 
point division involves only arithmetic on integer exponents; 
likewise, the large range of magnitudes does not adversely 
affect accuracy because gradient calculation is local. For 
the calculation of phi itself we advocate the use of a direct 
(Cholesky) solver in double precision; empirically we observe 
roughly uniform pointwise relative error across the domain.

Polygon meshes. Curved surfaces are often described 
by polygons that are neither planar nor convex; although 
such polygons can of course be triangulated, doing so 
can adversely affect an existing computational pipeline. 
We instead leverage the polygonal Laplacian of Alexa and 
Wardetzky1 to implement the heat method directly on po-
lygonal meshes—the only challenge in this setting is that for 
nonplanar polygons the gradient vector no longer has a clear 
geometric meaning. This issue is resolved by noting that we 
need only the magnitude |∇u| of the gradient; see Crane et 
al,11 Section 3.2.2 for further details. Figure 9 demonstrates 
distance computed on an irregular polygonal mesh.

Point clouds. Raw geometric data is often represented 
as a discrete point sample P ⊂ Rn of some smooth surface 
M. Rather than convert this data into a polygon mesh, we 
can directly implement the heat method using the point 
cloud Laplacian of Liu et al.,22 which extends previous  
work by Belkin et al.2 Computation of the gradient and di-
vergence are described by Crane et al,11 Section 3.2.3. Other  
discretizations are certainly possible (see for instance 
the work of Luo et al.23); we picked one that was simple to  
implement in any dimension. It is particularly interesting 

to note that the cost of the heat method depends primarily 
on the intrinsic dimension n of M, whereas methods based 
on fast marching require a grid of the same dimension m 
as the ambient space25—this distinction is especially im-
portant in contexts like machine learning where m may be 
significantly larger than n.

Choice of time step. Accuracy of the heat method relies 
in part on the time step t. In the smooth setting, Equation (5)  
suggests that smaller values of t yield better approxima-
tions of geodesic distance. In the discrete setting we in-
stead observe the somewhat surprising behavior that the 
limit solution to Equation (3) depends only on the number 
of edges between a pair of vertices, independent of how we 
might try to incorporate edge lengths into our formulation—
see Crane et al.,11 Appendix A. Therefore, on a fixed mesh  
decreasing the value of t does not necessarily improve accu-
racy, even in exact arithmetic—to improve accuracy we must 
simultaneously refine the mesh and decrease t accordingly. 
Moreover, very large values of t produce an over-smoothed 
approximation of geodesic distance (Section 3.3). For a fixed 
mesh, we therefore seek an optimal time step t* that is neither 
too large nor too small.

An optimal value of t* is difficult to obtain due to the com-
plexity of analysis involving the cut locus.28 We instead use a 
simple estimate that works well in practice, namely t = mh2 
where h is the mean spacing between adjacent nodes and 
m > 0 is a constant. This estimate is motivated by the fact that 
h2∆ is invariant with respect to scale and refinement; numeri-
cal experiments suggest that m = 1 yields near-optimal accuracy 
for a wide variety of problems. In this paper the time step

is therefore used uniformly throughout all tests and exam-
ples, except where we explicitly seek a smoothed approxima-
tion of distance, as in Section 3.3. For highly nonuniform 
meshes one could set h to the maximum spacing, providing 
a more conservative estimate. Numerical underflow could 
theoretically occur for extremely small t, though we do not 
encounter this issue in practice.

Numerics. As demonstrated in Figures 10, 18, and 19, one 
does not need a particularly nice mesh or point cloud to get a 
reasonable distance function. However, as with any numerical 
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Figure 9. Since the heat method is based on well-established 
discrete operators like the Laplacian, it is easy to adapt to a variety 
of geometric domains. Above: distance on a hippo composed of high-
degree nonplanar (and sometimes nonconvex) polygonal faces.



 

NOVEMBER 2017  |   VOL.  60  |   NO.  11  |   COMMUNICATIONS OF THE ACM     95

method, accuracy and other properties of the solution may be 
influenced by the quality of the mesh. For instance, in some 
applications one may wish to avoid “spurious minima,” that is, 
local maxima or minima that do not appear in the true (smooth) 
distance function. At present, there is no numerical scheme 
that guarantees the absence of spurious minima on arbitrary 
meshes, including exact polyhedral schemes.17 Empirically, 
however, we observe that the heat method produces fewer 
spurious minima than either fast marching or the bihar-
monic distance (see Figure 20), in part due to regularization 
from the Hodge step (step III). In cases where one wishes to 
avoid spurious minima altogether, we advocate the use of 
Delaunay meshes.

3.3. Smoothed distance
Geodesic distance fails to be smooth at points in the cut 
locus, that is, points at which there is no unique short-
est path to the source—these points appear as sharp 
cusps in the level lines of the distance function. Non-
smoothness can result in numerical difficulty for appli-
cations which need to take derivatives of the distance 
function φ (e.g., level set methods), or may simply be 
undesirable aesthetically.

Several distances have been designed with smoothness 
in mind, including diffusion distance,10 commute-time dis-
tance,14 and biharmonic distance21 (see the last reference 
for a more detailed discussion). These distances satisfy 
a number of important properties (smoothness, isometry-
invariance, etc.), but are poor approximations of true geo-
desic distance, as indicated by uneven spacing of isolines 
(see Figure 12, middle). They can also be expensive to eval-
uate, requiring one to either solve a linear system for each 
vertex, or compute a large number of eigenvectors of the 
Laplace matrix (∼150 to 200 in practice).

In contrast, one can rapidly construct smoothed approx-
imations of geodesic distance by simply applying the heat 
method for large values of t (Figure 11). The computational 
cost remains the same, and isolines are evenly spaced for 

any value of t due to normalization (step II); the solution 
is isometry invariant since it depends only on intrinsic 
operators. For a time step t = mh2, meaningful values of m 
are found in the range 1 − 106—past this point the term t∆ 
dominates, resulting in little visible change.

3.4. Boundary conditions
To solve the equations in steps I and II, we must define the 
behavior of derivatives near the boundary. Intuitively, the 
behavior of our distance approximation should not be sig-
nificantly influenced by the shape of the boundary (Figure 
13)—for instance, cutting off a corner of a convex domain 
should not affect the distance at 
the points that remain. For exact  
distance computation, we 
can apply standard zero-Neu-
mann or zero-Dirichlet bound-
ary conditions, since this 
choice does not affect the 
behavior of the smooth limit 

Figure 11. A source on the front of the Stanford Bunny results in 
nonsmooth cusps on the opposite side. By running heat flow for 
progressively longer durations t, we obtain smoothed approximations 
of geodesic distance (right).

Figure 12. Top row: our smoothed approximation of geodesic 
distance (left) and biharmonic distance (center) both mitigate sharp 
“cusps” found in the exact distance (right), yet our approximation 
provides more even spacing of isocontours. Bottom row: biharmonic 
distance (center) tends to exhibit elliptical level lines near the 
source, while our smoothed distance (left) maintains isotropic 
circular profiles as seen in the exact distance (right).
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Figure 10. The heat method can be applied directly to scattered point 
clouds. Left: face scan with holes and noise. Right: kitten surface 
with connectivity removed. Yellow points are close to the source.
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4. EVALUATION
4.1. Performance
A key advantage of the heat method is that the linear systems 
in steps I and III can be prefactored. Our implementation 
uses sparse Cholesky factorization,9 which for Poisson-
type problems has guaranteed sub-quadratic complex-
ity but in practice scales much better5; moreover there is 
strong evidence to suggest that sparse systems arising from 
elliptic PDEs can be solved in very close to linear time.34, 39 
Independent of these issues, the amortized cost for prob-
lems with a large number of right-hand sides is roughly 
linear, since back substitution can be applied in essentially 
linear time. See inset for a breakdown of relative costs in our 

Figure 13. Effect of Neumann (top-left), Dirichlet (top-right) and 
averaged (bottom-left) boundary conditions on smoothed distance. 
Averaged boundary conditions mimic the behavior of the same 
surface without boundary.

Figure 14. For path planning, the behavior of geodesics can be 
controlled via boundary conditions and the time step t. Top-left: 
Neumann conditions encourage boundary adhesion. Top-right: 
Dirichlet conditions encourage avoidance. Bottom-left: small values 
of t yield standard straight-line geodesics. Bottom-right: large 
values of t yield more natural trajectories.

Figure 15. Meshes used in Table 1. Left to right: Bunny, Isis, Horse, Bimba, Aphrodite, Lion, Ramses.

solution (see Renesse44 Corollary 2 and Norri,30 Theorem 
1.1, respectively). Boundary conditions do however  
alter the behavior of our smoothed distance. Although there is 
no well-defined “correct” behavior for this smoothed func-
tion, we advocate the use of boundary conditions obtained 
by taking the mean of the Neumann solution uN and the 
Dirichlet solution uD, that is, . The intuition 
behind this behavior again stems from a random walker 
interpretation: zero Dirichlet conditions absorb heat,  
causing walkers to “fall off” the edge of the domain. 
Neumann conditions prevent heat from flowing out of the 
domain, effectively “reflecting” random walkers. Averaged 
conditions mimic the behavior of a domain without 
boundary: the number of walkers leaving equals the num-
ber of walkers returning. Figure 14 shows how boundary 
conditions affect the behavior of geodesics in a path-plan-
ning scenario.
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implementation; Potential is the time taken to compute the 
right hand side in step III.

In practice, a number of factors affect the run time of 
the heat method including the choice of spatial discreti-
zation, discrete Laplacian, and geometric data structures. 
As a typical example, we compared the scheme from 
Triangle meshes section to the first-order fast march-
ing method of Kimmel and Sethian19 and the exact algo-
rithm of Mitchell et al.,27 using the state-of-the-art fast 
marching implementation of Peyré and Cohen31 and the 
exact implementation of Kirsanov.40 The heat method 
was implemented in ANSI C in double precision using a 
vertex-face adjacency list. Single-threaded performance 
was measured on a 2.4 GHz Intel Core 2 Duo (Table 1). 
Note that even for a single distance computation the heat 
method outperforms fast marching; more importantly, 
updating distance for new subsets γ is consistently an 
order of magnitude faster (or more) than both fast march-
ing and the exact algorithm.

4.2. Accuracy
We examined errors in the heat method, fast marching,19 
and the polyhedral distance,27 relative to mean edge length 
h on triangulated surfaces. Both fast marching and the 
heat method appear to exhibit linear convergence; it is 
interesting to note that even the exact polyhedral distance 
provides only quadratic convergence. Keeping this fact in 
mind, Table 1 uses the polyhedral distance as a baseline 
for comparison on more complicated geometries—Max is 
the maximum error as a percentage of mesh diameter and 
Mean is the mean relative error at each vertex. Note that 
fast marching tends to achieve a smaller maximum error, 
whereas the heat method does better on average. Figure 16 
gives a visual comparison of accuracy; the only notable dis-
crepancy is a slight smoothing at sharp cusps, which may 
explain the larger maximum error. Figure 17 indicates that 
smoothing does not interfere with the extraction of the 
cut locus—here we visualize values of |∆φ| above a fixed 
threshold. Overall, the heat method exhibits errors of the 
same order and magnitude as fast marching (at lower com-
putational cost) and is therefore suitable in applications 
where fast marching is presently used; see Crane et al.11 for 
more extensive comparisons.

Table 1. Comparison with fast marching and exact polyhedral distance

Figure 16. Visual comparison of accuracy. Left: exact polyhedral 
distance. Using default parameters, the heat method (middle) and 
fast marching (right) both produce results of comparable accuracy, 
here within less than 1% of the polyhedral distance—see Table 1 for a 
more detailed comparison.

Figure 17. Medial axis of the hiragana letter “a” extracted by 
thresholding second derivatives of the distance to the boundary. Left: 
fast marching. Right: heat method.

More recent implementations of the heat method improve 
accuracy by using a different spatial discretization,29 or 
by iteratively updating the solution.3 The accuracy of fast 
marching schemes is determined by the choice of update 

Heat method Fast marching

Model Triangles
Precompute  

(s) Solve
Max  

error (%)
Mean  

error (%) Time (s)
Max  

error (%)
Mean  

error (%) Exact time (s)

Bunny 28k 0.21 0.01s (28x) 3.22 1.12 0.28 1.06 1.15 0.95
Isis 93k 0.73 0.05s (21x) 1.19 0.55 1.06 0.60 0.76 5.61
Horse 96k 0.74 0.05s (20x) 1.18 0.42 1.00 0.74 0.66 6.42
Kitten 106k 1.13 0.06s (22x) 0.78 0.43 1.29 0.47 0.55 11.18
Bimba 149k 1.79 0.09s (29x) 1.92 0.73 2.62 0.63 0.69 13.55
Aphrodite 205k 2.66 0.12s (47x) 1.20 0.46 5.58 0.58 0.59 25.74
Lion 353k 5.25 0.24s (24x) 1.92 0.84 10.92 0.68 0.67 22.33
Ramses 1.6M 63.4 1.45s (68x) 0.49 0.24 98.11 0.29 0.35 268.87

Best speed/accuracy in bold; speedup in orange.
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since it tends to produce results more accurate than fast 
marching at a similar computational cost. However, accu-
racy is measured relative to the polyhedral distance rather 
than the smooth geodesic distance of the approximated sur-
face. Like fast marching, Surazhsky’s method does not take 
advantage of precomputation and therefore exhibits a sig-
nificantly higher amortized cost than the heat method; it is 
also limited to triangle meshes.

4.3. Robustness
Two factors contribute to the robustness of the heat method, 
namely (1) the use of an unconditionally stable time discret-
ization and (2) an elliptic rather than hyperbolic formula-
tion (i.e., relatively stable local averaging vs. more sensitive 
global wavefront propagation). Figure 19 verifies that the 
heat method continues to work well even on meshes that 
are poorly discretized or corrupted by a large amount of 
noise (here modeled as uniform Gaussian noise applied 
to the vertex coordinates). In this case we use a moderately 
large value of t to investigate the behavior of our smoothed 
distance; similar behavior is observed for small t values. 
Figure 18 illustrates the robustness of the method on a sur-
face with many small holes as well as long sliver triangles.

5. CONCLUSION
The heat method is a simple, general method that can be eas-
ily incorporated into a broad class of algorithms. However, a 

rule—a number of highly accurate rules have been devel-
oped for regular grids (e.g., HJ WENO18), but fewer options 
are available on irregular domains such as triangle meshes, 
the predominant choice being the first-order update of 
Kimmel and Sethian.19 Finally, the approximate algorithm 
of Surazhsky et al.40 provides an interesting comparison 

Figure 18. Smoothed geodesic distance on an extremely poor 
triangulation with significant noise—note that small holes are 
essentially ignored. Also note good approximation of distance even 
along thin slivers in the nose.

Figure 19. Tests of robustness. Left: our smoothed distance (m = 104) 
appears similar on meshes of different resolution. Right: even for 
meshes with severe noise (top) we recover a good approximation of 
the distance function on the original surface (bottom, visualized on 
noise-free mesh).

Figure 20. In any method based on a finite element approximation, 
mesh quality will affect the quality of the solution. However, because 
the heat method is based on solving low-order elliptic equations 
(rather than high-order or hyperbolic equations), it often produces 
fewer numerical artifacts. Here, for instance, we highlight spurious 
extrema in the distance function (i.e., local maxima and minima) 
produced by the fast marching method (left), biharmonic distance 
(middle), and the heat method (right) on an acute Delaunay mesh 
(top) and a badly degenerate mesh (bottom). Inset figures show 
closeup view of isolines for the bottom figure.

Fast Marching Biharmonic Heat Method
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Method for Solving Boundary Value 
Problems. Springer, Berlin 1995.
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Science. Cambridge University Press, 
Cambridge 1996.

 38. Solomon, J., de Goes, F., Peyré, G.,  
Cuturi, M., Butscher, A., Nguyen, A.,  
Du, T., Guibas, L. Convolutional 
Wasserstein distances: Efficient 
optimal transportation on geometric 
domains. ACM Trans. Graph. 34, 4 
(2015), 66:1–66:11. DOI:http://dx.doi.
org/10.1145/2766963.

 39. Spielman,D.A., Teng, S.-H.. Nearly-
linear time algorithms for graph 
partitioning, graph sparsification, and 
solving linear systems. In Proc. ACM 
Symp. Theory Comput. (STOC ‘04) 
(2004). ACM, 81–90.

 40. Surazhsky, V., Surazhsky, T.,  
Kirsanov, D., Gortler, S.J., Hoppe, H. 
Fast exact and approximate geodesics 
on meshes. ACM Trans. Graph. 24, 3 
(2005), 553–560.

 41. van Pelt, R., Gasteiger, R., Lawonn, K., 
Meuschke, M., Preim, B. Comparative 
blood flow visualization for cerebral 
aneurysm treatment assessment. 
Comput. Graph. Forum 33, 3 
(2014), 133–140. DOI:http://dx.doi.
org/10.1111/cgf.12369

 42. Varadhan, S.R.S. On the behavior of 
the fundamental solution of the heat 
equation with variable coefficients. 
Comm. Pure Appl. Math. 20, 2 (1967), 
431–455.

 43. Villa, E. Methods of geometric 
measure theory in stochastic 
geometry. Ph.D. dissertation. 
Università degli Studi di Milano  
(2006).

 44. Von Renesse, M.-K. Heat kernel 
comparison on Alexandrov spaces 
with curvature bounded below. Poten. 
Anal. 21, 2 (2004), 151–176.

 45. Yang, F., Cohen, L. Geodesic distance 
and curves through isotropic and 
anisotropic heat equations on images 
and surfaces. J. Math. Imaging Vis. 
15, 2 (2015), 210–228.

 46. Ying, X., Xin, S.-Q., He, Y. Parallel 
Chen-Han (PCH) algorithm for 
discrete geodesics. ACM Trans. 
Graph. 33, 1 (2014), 9:1–9:11.  
DOI: http://dx.doi.
org/10.1145/2534161.

 47. Zou, Q., Zhang, J., Deng, B., Zhao, 
J. Iso-level tool path planning for 
freeform surfaces. Comput. Aid. Des. 
55 (2014), 117–125.

great deal remains to be explored, including further inves-
tigation of alternative spatial discretizations, and formal 
analysis of convergence under refinement. Further explo-
ration of the parameter t also provides an avenue for future 
work (especially in the case of variable spacing), though one 
should note that the existing estimate already outperforms 
fast marching in terms of mean error (Table 1). Another 
natural question is whether a similar transformation can 
be applied to a larger class of Hamilton-Jacobi equations; it 
is likewise enticing to apply a similar principle to distance 
computation on domains that do not immediately resemble 
a continuous domain (such as a weighted graph).
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